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INTRODUCTION

This monograph is a part of a more comprehensive treatment of estima-
tion of latent traits, when the entire response pattern is used.

The fundamental structure of the whole theory comes from the latent
trait model, which was initiated by Lazarsfeld as the latent structure anal-
ysis [Lazarsfeld, 1959], and also by Lord and others as a theory of mental
test scores [Lord, 1952]. Similarities and differences in their mathematical
structures and tendencies were discussed by Lazarsfeld [Lazarsfeld, 1960]
and the recent book by Lord and Novick with contributions by Birnbaum
[Lord & Novick, 1968] provides the dichotomous case of the latent trait
model in the context of mental measurement.

The main difference between these two works is that Lazarsfeld tends
to study all possible response patterns of dichotomous items, whereas Lord
prefers to summarize the information on the examinee’s answer sheet by
using test scores. That is to say, with n dichotomous items there are 2n possible
response patterns, which are represented by such vectors as (0, 1, 0, 0, 1, ¯ ¯ -),
while these response patterns are classified into (n -~ 1) score categories,
if we use the number of right answers as the test score.

In the present treatment by the author, because of the reasons given
in Chapters 2 and 4, not only the response pattern is used as the basis of
estimation of latent trait instead of the test score, but also the reponse pattern
itself is expanded to cover the situation where item reponses are classified
into more than two categories. For the sake of convenience the terminology
of mental test theory is used throughout this paper. However, the discus-
sions in this paper are applicable in other fields of psychology, such as measure-
ment of attitude, preference measurement, etc., as well as in the measurement
of ability.

The main purpose of the present paper is: (1) to set forth a method 
estimation of latent ability which makes use of graded scoring of each of a
number of test items; (2) to investigate the uniqueness of such estimators;
(3) to compare them with methods which make use of conventional test
scores for dichotomous items in terms of the amounts of information, the
standard errors of estimators, and the mean-square errors of estimators.

Throughout this paper we shall confine our discussion to the situation
where the latent space is unidimensional, and a respondent is allowed to
answer each item in a free way, without being forced to choose one of the
given alternatives. We shall assume that the principle of local independence
is admissible, so that the probabilities of joint occurrence of specified responses
to the items should be simple products of the separate probabilities.
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We shall also assume that the values of item parameters are known,
so that we do not have to estimate them from the data.

Stress will be put upon formulating sufficient conditions for the existence
of a unique maximum likehood estimator and a unique Bayes modal estimator
when the entire response pattern is used. These conditions will guide us
when we try to find operating characteristics for individual item responses
which give a unique maximum likehood estimator and a unique Bayes modal
estimator. Stress will also be put upon finding a way of increasing the amount
of information given by a set of items, and for this purpose operating charac-
teristics of graded item responses are introduced and discussed. The Bayes
estimator will be developed, with the loss function taken to be the mean-
square error multiplied by the density function of the latent variate, when
the distribution is known. In the case where this distribution satisfies certain
conditions, the Bayes modal estimator will also be obtained, and its utility
as an approximation to the Bayes estimator will be observed and discussed
especially in connection with the mean-square errors of estimators. The
computational procedures for obtaining the estimates will briefly be discussed.
Finally, the relationship between the formula for the item characteristic
function and the philosophy of scoring will be observed and discussed.



CHAPTER 1

DEFINITION OF RESPONSE PATTERN AND OPERATING
CHARACTERISTIC

Let g, h or ] denote an item, and £g , /oh or/q. be any specified response
to item g, h or j. By response pattern, denoted by V~ or V, we mean a vector
defined for specified n items by

(1-1) V, = (kl, k2, ]ca, ...,

which is a sequence of specified item responses given by a respondent. In the
case of free-response items each item can elicit an almost infinite number
of different responses, and hence each test or a set of questionnaires can
elicit an almost infinite number of different response patterns. In the process
of analyzing data, however, it may be more practical for us to categorize
these infinite numbers of possibly different responses to an item in accordance
with some criteria. When any response to item g can be evaluated according
to its degree of attainment to the solution of the problem in the measurement
of ability, or to its degree of intensity of favorableness to the statement in
the measurement of attitude, all the possible responses to item g can be
classified into a certain limited number of categories arranged in the order
of attainment or intensity. We shall call these categories item scores to item g,
and denote them by x¢. For convenience, let the possible value of xg be succes-
sive integers, 0 to m~, assigned in the order of intensity or attainment. Then
in such a case the response pattern may be changed into a sequence of integers
expressed by

(1-2) (xl , x2, xa , "", x.),

and for the sake of simplicity we shall also call it ~ response pattern and
denote it as V.

These specified responses to item g can can come, with possibly different
probabilities, from a subject anywhere on the latent continuum. By the
operating characteristic of item response we mean the probability of a specified
item response, /co , being expressed as a function of the latent variable 0.
Let P~, (0) or P,, denote the operating characteristic of a specified item
response, k,, so that we have

(1-3) P,o (0) = Pr {I¢~ 10}.

Thus to any response pattern V we could assign n specified operating charac-
teristics of item responses expressed as functions of 0. They can be mono-
tonically increasing or decreasing in 0, unimodal, or multimodal, or of any
shape.
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We shall define the operating characteristic of response pattern as
the probability of a specified response pattern V~ being expressed as a func-
tion of 0. Let Pv(0) denote the operating characteristic of response pattern
V, , so that we have

(1-4) Pv(O) = Pr {Y~ I 0},

and by the principle of local independence we can write

(1-5) P~,(O) = l’I

In the case where any response to item g is scored in the way explained
earlier, we may assign an operating characteristic to any score category xo,
which may be called the operating characteristic of graded response Xo,
denoted by P~o (0) or P~o . Thus in this case we can write

(1-6)

and

(1-7)

P.,(0 -- Pr {xo ] 0}

= Pr{ko~Zo I 0}

Pr(0) = II P.o(0).
x~EV

When all the items are scored dichotomously, 1 or 0, as is often the case
in aptitude or achievement testings, mo is unity and the resulting response
pattern becomes a sequence of 1 and 0. In such a case PI(O) becomes what
is usually called the item characteristic function of item g in the terminology
of mental test theory [Lord & Novick, 1968]. We shall denote PI(O) as Po(O)
and Po(O) as Q~(o) in this particular case, as distinct from the others, where
items are scored in more graded ways.

If for some reason all the possible response patterns for specified n items
are reclassified into a certain limited number of categories, then Pr(0), the
operating characteristic of such a category, T, will be given by

(1-8) Pr(O) = ~_, Pr(O)

= II eko(o).
F~T k~EV

A simple test score, for instance, is an example of such a category, but (1-8)
holds for any other principle of categorization.



CHAPTER 2

MAXIMUM LIKEHOOD ESTIMATOR AND BAYES MODAL
ESTIMATOR BASED ON THE RESPONSE PATTERN

When the functional forms for P~, (0) and their parameter values are
specified with respect to n particular items, the response pattern given by a
respondent can be regarded as a sample of n independent observations from
possibly different distributions, with 0 as the single unknown parameter.
In maximum likehood estimation we take as the estimator of this single
unknown parameter that value of 0 which makes the joint probability of n
independent observations as large as possible. In the present case the likeli-
hood function is the operating characteristic of the response pattern itself
so that

(2-1) Lv(O) = ~I P~(O)

= P~(O),

and the likelihood equation will be given by

(2-2)
0 logLv(0) = 0
0--~ ~-~ [ ~ log P,,(0)]

~ O.

It has been pointed out by Lord [1953] that on the normal ogive model
for dichotomous items a sufficient statistic for 0 exists only if all the items
are equivalent, and observation and discussion are focused on the maximum
likelihood and confidence interval estimation of an examinee’s ability within
the restriction of equivalence of items in the case of free-response items as
well as multiple-choice items. It has also been pointed out by Birnbaum
[in Lord & Novick, 1968] that on the logistic model a simple sufficient statistic
for 0 always exists with respect to any response pattern, and this model with
a specified scaling factor can be used as a good approximation to the normal
ogive model.

In virtue of the fact that high-speed computers are now available and
complicated calculations can be make at a very small cost, we can use the
entire response pattern on the variety of models in estimating a respondent’s
latent trait without such a restrictive assumption that the items are equiva-
lent, nor with any approximation to one model by another. Although the
sufficiency of a statistic is a desirable property especially in maximum likeli-
hood estimation, it does not hold with respect to many models for the operat-
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ing characteristic of an individual item response, even if the items are scored
dichotomously. In such a case we should use a maximum likelihood estimator,
if it exists, based on the entire response pattern rather than change the model
itself or add some restrictive assumptions, unless there is a good reason for so
doing. For this reason, and aiming towards a broad range of applicability,
we shall discuss in the next chapter the sufficient conditions for the existence
of the unique maximum likelihood estimator with respect to the model when
the entire response pattern is used.

One convenient property of the maximum likelihood estimator with
respect to the likelihood function given by (2-1) will be its transformation-
free character, which does not pertain to other estimators like the median
and Bayesian estimators. Suppose there is another variable r, which has a
one-to-one correspondence with 0. In an ordinary case it may be reasonable
to assume that one can be expressed as a monotonically increasing function
of the other. From the definition of the operating characteristic of item
response we can write

(2-3) Pk,(O) = P,{k~ I 

We can see from (2-1) and (2-3) that, if a maximum likelihood estimator 
exists for the variable 0, r(0) is also the maximum likelihood estimator for the
variable r, which is denoted by ¢. Thus whenever there is a good reason why 0
should be transformed, the new maximum likelihood estvniator can easily
be obtained from the old one through the functional relationship between the
two variables.

To make this point clearer, suppose 0 and r are continuous and P~, is
d~erentiable with respect to 0 as well as ~th respect to r throughout their
ranges, and further thut r is u monotonically increasing and t~ee-d~erentiable
function of 0.

From (2-2) and (2-3) we would write

(2~) 0 log L v _ ~ (O/O0)P~,

= ~ P~, A O~

= 01ogLv0~.
0r 00

S~ce Or/O0 is positive, i~ is clear from (2-4) that ¢ exists whenever 0 exists,
and tha~ the value of ¯ which corresponds to the maximum fikelihood esti-
mator ~ will also make likelihood function Lv equal to zero regardless of the
functional form for 0~/00.
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Generally speaking, we cannot decide which one of the possible monotonic
transformations is the most appropriate one, since it is difficult for us to define
a reasonable unit and origin of the latent continuum in a strictly objective
way. Thus there is a philosophical difficulty in deciding whether a certain
difference of the latent ability at one place of the continuum is equivalent
to a difference at another place. This problem may be solved, or at least
ameliorated, if we succeed in relating the ability measure to some important
external variable. Then we might want to choose a transformation which
would make that relationship linear. Without such an external criterion we
can say, for instance, that examinee A with ability 01 is superior to examinee B
with ability 02, and examinee B is superior to examinee C with ability 03, but
we cannot say that the superiority of A at B is greater than, equal to or less
than, that of B to C. Thus in general cases the origin and unit of the latent
continuum are of arbitrary natures, and they may be transformed to another
arbitrarily. The transformation-free character, therefore, is a desirable
property of an estimator.

When the density function of the latent variable, 1(0), is unknown, the
maximum likelihood estimator 0 may be the most reasonable and useful
estimator of 0. If the latent density function is known, however, we can add
this information to the likelihood function. We shall define another function,
By(O), so that

(2-5) B,.(O) = I(O)Lv(O) = 1(0) II 

and then we have

log By(O) = 0-~ [log 1(0) Y]. log P,o(O)](2-6)
k~V

=0

in the same way that the likelihood equation is defined.
The new estimator, which makes By(O) absolutely maximal, is denoted

by ~, as distinct from 0. Hereafter, we shall call this estimator the Bayes modal
estimator in distinction from the maximum likelihood estimator and also
from the Bayes estimator, which will be introduced and discussed in Chapter 7.

Since in general cases ](0) does not have a transformation-free character,
the Bayes modal estimator t~ does not have a transformation-free property
except in very limited situations. The density function of r, denoted by g(r),
is transformed from the density function of 0 by

00
(2-7) g(r) -- ](O).-~r,

and then from (2-6) and (2-7) we 
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(2-s)

where

(2-9)

0 log By(O)
O0

B*v(r) = g(~-) 1-I P,{kg 
ko~V

= g(r) 1-I P~.(O).
ko~V

Thus it has been made clear that ~ does not coincide with ~(~) unless 0%/00~ = O.
This means that the Bayes modal estimator obtained by using By(O) as the
function to be minimized does not have a transformation-free property ia the
way ~ does, u~ess the transformation is of linear form.



CHAPTER 3

SUFFICIENT CONDITIONS FOR THE EXISTENCE OF THE
UNIQUE MAXIMUM LIKELIHOOD ESTIMATOR AND THE
UNIQUE BAYES MODAL ESTIMATOR WHEN THE ENTIRE

RESPONSE PATTERN IS USED

In using maximum likelihood estimation, it is needless to say that the
uniqueness of the maximum likelihood estimator is a desirable character for
the likelihood function, although we can choose the largest of all the local
maxima, if there are more than one. We shall, therefore, confine our attention
to situations where only one local maximum exists for the likelihood function
L~.(O) and also for the function B~(~).

If we assume that the likelihood function is differentiable with respect
to ~ throughout its range, a sufficient condition for the existence of an absolute
maximum for the likelihood function is that the likelihood equation should
hold at a unique value of ~, say 0o , and it is monotonically decreasing in 0
for ~o - e < ~ < ~o -t- e, where e is some positive number. The same is true
with respect to the function By(O) and the equation given by (2-6). Of course,
this is not a necessary condition. It is apparent that the likelihood function
Lv(O) as well as the function B~(~) can be possessed of a unique local maximum
even if its first derivative does not exist throughout the range of 0. However,
we shall proceed in line with the above assumption and requirement, since we
must content ourselves with formulating rules which will give us fruitful
results and a relatively wide range of applicability from the practical point
of view.

It seems appropriate for us to set up sufficient conditions for the likeli-
hood function Lr(O) or the function By(O) to have a unique maximum 
respect to individual items, rather than with respect to an entire test or a set
of questionnaires. Conditions which are set up for a particular battery of
items will be of little use, since we have to take into consideration the testing
situations where we are free to choose items with optimal quality, from the
standpoint of testing purposes and respondents’ conditions, out of the item
library in which a sufficient number of items are stored with reliable quality
controls.

For the reasons described above, we shall assume that Pk,(O) has a first
derivative with respect to ~ throughout its range. Let us denote the range
of ~ by (q, ~ (i.e., q < 0 < ~ or [q, ~] (i.e., ~ < ~ <~ ~), with q and ~as 
lower and upper bounds of the range, for any possible response to item g.
Further, we shal[ define Ak,(O) so that

(o/o~)P~o(~)
(3-1) A,.(O) - P,.(O) 

9
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and two asymptotes, Ca o 0 and Ca, ~ such that

Ca.,e_ = 1~!~ A~,(O)’]
(3-2) 

t"
C~,.~ lim_ A~o(O)

040

For the likelihood function Lv, defined in the previous chapter, sufficient
(though not necessary) conditions for unique maximum with respect to 
individual item can be expressed by the following two statements.

(i) A~o(O) should be monotonically decreasing in 0 for any response kg
to item g.

(ii) C~,..~ and C~o.~ should be positive and negative respectively, for any
response kg to item g. These values can be positive and negative
infinities. This second statement is expressed by the following
inequalities.

(3-3)
C~g.o > ~}.

Hereafter, we shall call these statements conditions (i) and (ii) respec-
tively. We may use the above pair of statements as a criterion for a model to
produce a unique maximum likelihood estimator, 0, with respect to any
possible response pattern. It is also apparent that if a test consists of items,
each of which has responses satisfying both conditions (i) and (ii), but has 
model for the operating characteristicwhich is different from each other, the
resulting likelihood function also supplies a unique local maximum with any
response pattern. This fact suggests the possibility of combining several such
models whenever it is necessary, provided that the ranges of the latent
variables defined are the same.

If we content ourselves with obtaining a terminal maximum at either of
the positive and negative extreme values of 0 for a very limited number of
possible response patterns, (3-3) may be changed into the following.

(3-4)

where one at least is a strict inequality. In this case, when an equality holds
for a specified one of them with respect to every element of a given response
pattern, a terminal maximum is obtained. Hereafter, we shall call this
condition (ii)*, as a substitute for condition (ii). On many models of practical
importance condition (ii) does not hold for every individual item response,
while condition (ii)* does instead. The normal ogive model and the logistic
model for dichotomous items are examples of this case, as we shall see in
Chapter 5.
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The applicability of these pairs of conditions as criteria for producing a
unique maximum likelihood estimator is broadened when we take into con-
sideration the possible transformations of the latent variable, which we denote
as r in the previous chapter. Since maximum likelihood estimator 0 has a
transformation-free character, as was discussed in the previous chapter,
~ also exists whenever ~ exists, even if the transformed operating characteristics
for individual item responses do not satisfy the above requirements. Thus,
even in case a given model does not provide the operating characteristics of
individual item responses which satisfy the requirements in the above condi-
tions, we could try to find another variable, which can be expressed as a
monotonically increasing function of the original variable, and with which
the transformed operating characteristics of item responses satisfy the
requirements in the above conditions, in order to see whether the original
model supplies the likelihood function which gives a unique maximum
likelihood estimator with respect to any possible response pattern.

For illustrative purposes, we shail see an example in which Ai~,~(r)
defined by

(3-5)

fulfills the requirement stated in condition (i), while A~.(0) defined by (3-1)
does not, and the one variable is a monotonically increasing function of the
other.

Example:

We shall consider a variable 8 with the range, (0, ¢o), and dichoto-
mous item g, all the responses to which are reasonably classified into two
categories, 1 and 0. Suppose their operating characteristics are given by

(3-6)

and

1
(3-7) Po - 1 + 8’

where

(3-8) P, ~- Po = 1.

Differentiating (3-6) with respect to 8, we have

0 Pl - 1
(3-9) 0-~ (1 -t- 8)2
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and then by a further differentiating

0~ 2
(3-10)

00 P~ = (1 + 0)~"

From these two equations and (3-6), we obtain the following inequality

(3-11)
p~O_~pa)_ {o~p~)~ = 20+1

[00 (1 

<0-

Since the left-hand side of (3-11) is the numerator of the derivative of A~,(O),
(3-11) suggests that AI(O) satisfies condition (i).

On the other hand, by differentiating (3-7) with respect to 0 and proceed-
ing in the same way, we have

0 Po = 1
(3-12)

0-~ (1 + 0)2,

(3-13)

and

(3-14)

02 2
002Po - (1 + 0)3

2_ 1

> 0,

the result indicating that Ao(O) is a monotonically increasing function of 0.
Thus it is clear in this ease that Ao(O) does not fulfill condition (i).

Now we shall consider another variate ~, with the range, (-- ~, ~o), and
whose funetionM relationship with 0 is given by

(3-15) ~ = log 0.

Then the preceding operating characteristics as functions of 0 willbe
written as the following.

1
(3-16) P~ - _,,

l+e

1
(3-17) Po = ~"

l+e~

D~erentiating these equations with respect to r ~nd following the same w~y
~ before, we obtain
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(3-18)

(3-19)

(3-20)

and

(3-21)

and then finally,

(3-22)

and

P’ = {1 +e’}{1

= P1Po,

1
Po = -- {1 We’}{1 ~-e-T}

= -- PIPo,

0~

’~ P1 = P,Po {Po -- P, }

~2
-~-fir~ P o = P1P o { P , -- Po},

The results indicate that both A~I(r) and Ao~l(r) satisfy the requirement
stated in condition (i).

Thus we have seen in this example that condition (i) does not hold when
we take 0 as the variable and (3-6) ~nd (3-7) as the operating characteristics
of item responses, while it does when we t~ke r, the logarithmic transformation
of ~, as the variable and the transformed equations, (3-16) and (3-17), us 
operating characteristics.

We could easily see that both A ~ (r) and ~ (v) satisfy th e requirement
stated in condition (ii)*, since we have from (3-5), (3-18), and 

(3-24) A~(r) (O/Or)P~
P~

~ Po

and

(3-25) A ~o~l(.~) (O/O~-)Po
Po
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and then

(3-26)

~nd

(3-27)

C1.~_ = lim P

=1

C1., = lim Po

=0

Co,,_ = lim [--P1]"

=0

Co,, = lim [-P1]

=--1

The above results suggest that both 0 and ¢ exist with respect to any
possible response pattern except for two extreme cases for a test consisting
of such items, and one is transformed to the other through the functional
form given by (3-15). In both cases terminal maxima are obtained instead
with respect to the two particular response patterns where all the elements
are 1, and where they are 0, since neither A~’J(r) nor Ato’l(r) satisfies the
requirement stated in condition (ii), that is, strict inequalities.

To show this, the likelihood equation is given by

(3-28)
O log Lv(O)

O0
= n~A,(O) -]- noAo(O)

o(1 + o) (1 o)

where n~ and no are numbers of response 1 and 0 respectively in a given
response pattern, satisfying

(3-29) n = nl q-no.

From (3-28) we obtain

(3-30) 0 = na

which provides terminal maxima, 0 and positive infinity, when n~ = 0 and
no = 0 respectively, and reasonable maximum likelihood estimates otherwise.
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On the other hand, if the likelihood equation is defined with respect to r,
we have

0 log Lv
(3-31) 0r

(3-33)

(3-34)

and then

(3-35)

__ _ nlA~’~(r) noAot’l(r)

{1 +

{1 + e’}

= 0.

no

{1 + e-’}

nod

{1 +

~o. ~ - J ~oo1

tar J J

We can see ghag ghe firsk germ of ghe righg-hand side of (a-Sg) ~1 be negagive
oNy g A ~ (r) is monotonically decreasing in r~ and ~hak

(a-aO
°’~
O0~ -- 0

Rearranging (3-31) we could write

(3-32) ¢ = log nl - log no

= log (0),

which provides terminal maxima, positive and negative infinities, when
no = 0 and nl = 0 respectively, and reasonable maximum likelihood estimates
otherwise, the results directly obtainable from 0 through (3-15).

In a specific case where one of the variables is a linear transformation
of the other, A~,(O) is monotonically decreasing in 0 if A~:~ (r) is monotonically
decreasing in r, and vice versa. To prove this, we shall assume that P~, is
twiee-differentiable with respect to r as well as with respect to O. We could
write

0_~ p~o f 0 ~ Or
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(3-37)

and

only if r is a linear transformation of 0. Thus in this case the left-hand side of
(3-35) is negative, so it has been proved that Ak,(0) as well as A~:J(r) 
monotonically decreasing function of 0. The other half of the proof can be
attained simply by exchanging 0 to r and r to 0 in (3-33) through (3-36).

So far we have discussed sufficient conditions for the likelihood function
Lv to provide a maximum likelihood estimator. Now we shall proceed to
discuss those for the function Bo to supply a unique Bayes modal estimator
with respect to any possible response pattern.

For the function Bo , sufficient (though not necessary) conditions for
the existence of an absolute maximum will be expressed by the following two
statements concerning the density function of 0, in addition to the previous
two conditions, (i) and (ii)*.

Throughout the rest of this chapter we assume that I(0) is differentiable
with respect to 0. Here we shall define G(0), and the two asymptotes, C~.~_ and

C~,~, so that

(OIO0)~(O)
V(O) = I(0)

C~,~_ = lim
(3-38) 0-0_ ~ .

C~.~ lim0~0 G(0)J

These additional conditions are the following:

(iii) G(0) defined by (3-37) should be monotonically decreasing 
(iv) C~. ~. and C~. ~ should be positive and negative respectively, and these

values can be positive and negative infinities. This statement will be
expressed by the following set of inequalities.

(3-39)
C~,~ <

Here it should be noted that, in order for a model to provide a unique
local maximum with respect to any possible response pattern without excep-
tion, the model does not have to produce the operating characteristics of
individual item responses which satisfy the requirement stated in condition
(ii), that is, strict inequalities, but what is required is only the fulfillment 
condition (ii)* instead, which holds more frequently in practical situations,
as we shall see in Chapter 5. In such cases we can always get the Bayes modal
estimator ~ with respect to every possible response pattern whenever an
appropriate latent density function is given, although we can only obtain
terminal maxima with respect to the extreme response patterns if we try to
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get the maximum likelihood estimator ~. This fact supports the utility of the
Bayes modal estimator ~ as a good computational compromise for the Bayes
estimator as we shall see in Chapter 8.

As examples of the latent density function satisfying the requirements
stated in conditions (iii) and (iv), the normal and logistic density function
with u and a as the parameters are taken here. In these cases the range of
variate 0 is (- ~, ¢~), and each density function is expressed as follows:

(3-40) I(o) v/~ ,~

(3-41) ](0) = ~ {1 + e-U(°-")/’}-~{1 e~(°-~)/’}-~

where d is a scaling factor.
For the normal density function, we have by d~erentiating (3~0) xvith

respect to 0,

(3-42)
1 e_(O_.,.,,..{ (o- ~,).}~o~ ~(o) - v’~ 

= f(o){-(° ~-

and then inserting this result into (3-37), we obtain

(3-43) ~(0) (0-~ .)

Obviously this result shows that the normal density function satisfies the
requirement stated in condition (iii), and will give the two asymptotes such
that

(3-44) C~ o._ = ~ ~

which fulfill the requirement stated in condition (iv).
As for the logistic density function, the first derivative of (341) is given

by

0 d~
e_~<o_~)/.}_,{ + e~(O_~)/~}_,(3~5) ~1(0) = ~ I {I--2(1

= I(o).~ {1 - 2(1 

Inse~ing this result into (3-37), we obtain

(3-46) G(O) = ~ {I - 2(1 + e-~(°-")/~)-’}
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which is again monotonically decreasing in 0 and will give the two asymptotes
such that

(3-47) 

C~.~

Thus conditions (iii) and (iv) are also met with respect to the logistic density
function.



CHAPTER 4

THE OPERATING CHARACTERISTIC OF GRADED RESPONSE
WHEN THE THINKING PROCESS IS HOMOGENEOUS

In many cases of estimating a respondent’s latent trait, or ability in the
terminology of mental test theory, the situation is limited to one in which a
sample of respondents has answered a test or a set of questionnaires consisting
of a certain number of dichotomous items. In other words, any response to
an item should be either positive or negative, that is, "correct" or "incorrect"
in the terminology of mental testing and "favorable" or "unfavorable" in the
terminology of attitude measurement. Thus the resulting response pattern is
a sequence of positive and negative responses, and, on the basis of such a
response pattern or of some kind of score which is nothing but an aggregation
of more than one response pattern, some kind of average position is assigned
to the respondent.

If, however, we try to measure an ability which is essential to profound
thinking, for instance, we may have to prepare items requiring complex
reasoning processes, and consequently it may require a considerable amount
of time for an examinee to solve even one of them. Since the entire time for
testing is more or less limited and we cannot expect an examinee to solve
many such items, it may be that the more profound the items, the less
information we get about an examinee’s ability, so far as the answers are
evaluated dichotomously, i.e., success or failure. In this instance we shall
be able to get more information if we modify the items so that we may evaluate
their responses in a more graded way, without changing the qualities of the
items.

If an examinee succeeds in solving a given problem perfectly, his reasoning
should be regarded as complete. If he fails in solving it, his reasoning process
should be considered as incomplete, possibly to various extents. We should
score the response to an item in accordance with the extent of the respondent’s
attainment toward the goal manifested in his protocol. In other words, how
close his reasoning process has attained toward the goal should be evaluated.
Sometimes the reasoning required in solving the problem may be fairly
homogeneous throughout the whole thinking process, while sometimes it may
be a heterogeneous one consisting of somewhat different subprocesses like a
chain. In the former case the operating characteristics of graded responses
may be expressed in a much simpler way, since it may reasonably be assumed
that the discriminating power should be almost constant throughout the
whole thinking process required in solving the problem. In the latter case,
however, they may be more complex, since each subprocess may supply a
different value of discriminating power. Here we shall deal only with the

19
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former case where the thinking process used in solving a given item is assumed
to be homogeneous, leaving discussion on the latter case to some other
opportunity.

As we have defined in Chapter 1, when any response to item g is classified
into (m~ -]- 1) categories, 0 through m~ , the resulting response patterns are
sequences of integers. We shall call such a scored response a "graded response,"
and an item all of whose responses are scored in this way a "graded item." A
dichotomous item is a special case of a graded item, in which mg= 1, as was
mentioned in Chapter 1.

The respons.e pattern for n graded items is given by the following form,

(4-1) V = (zl , x2 , z3 , "" , x~),

where xg is a nonnegative integer.
It is easily understood that any graded item can be reduced to a dichoto-

mous item, if only we rescore a given graded item in such a way that any
item score less than x, is 0 and that more than or equal to xo is 1. Since there
are m~ category bounds for a graded item, we can obtain m, sets of P,(O)
and Q,(O), the operating characteristics defined for a dichotomous item in
chapter 1. Let P~(O) denote P,(O) obtained in this way for category bound xo,
which varies 1 through m,. We must note that these P~(O) may be regarded
as a set of item characteristic functions with the same value o] discrimination
index, but with different values of diff~culty index. Further, we shall define
P*~(O) and P~m.÷,)(O) so that

(4-2) P*o(O) = 

and

(4-3) P~,..+~)(O) = 

We can write for a specified graded response xg that

(4-4) Px.(O) --- P~(O) - P5.+1,(0) 

which is the basic formula for the operating characteristic of graded response,
when the thinking process is homogeneous, for any specification of the model
with difficulty and discrimination index as the parameters for the item
characteristic function. When these item characteristic functions are mono-
tonically increasing in 8, the operating characteristic of graded response is
neither monotonically increasing nor decreasing in O, unless xo = m, or xo = 0.

In the measurement of a speed factor, for instance, we could use this
model of graded dichotomy, although it may be better to set up a new model
for that purpose by taking into account various elements peculiar to it. In
this example, items themselves are usually easy enough for an examinee of the
target population to solve, if only ample time is allowed. The point is not
whether an examinee can solve an individual item, but how many items he
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can solve within a limited time. For this reason we should rather treat as a
unit an aggregation of homogeneous items with a strict time limit, and specify
operating characteristics with respect to this aggregation in a graded way,
for the various degrees of attainment, just like we do for an individual item
of a power test. If, for instance, we try to measure the examinee’s speed factor
in calculation, we could prepare a certain number of different units with
possibly different discriminating powers, one of which consists of homogeneous
items of addition, another of which consists of homogeneous items of sub-
traction, and so forth. We may evaluate the results for each unit in a graded
way, with, perhaps, more than two grades, and specify an operating charac-
teristic for each graded response category of the unit.

In the measurement of attitude, this model may reasonably correspond
to the situation in which the respondent’s intensity of positivity toward a
given statement is manifested. In this instance the intensity of positivity may
vary continuously, and yet it is usually expressed in a discrete manner.

There may be more instances and situations available for this general
model of graded dichotomy. In any case it may be a fruitful device for us to
obtain as much information as possible from testing results.



CHAPTER 5

NORMAL OGIVE AND LOGISTIC MODELS FOR THE OPERATING
CHARACTERISTIC OF GRADED RESPONSEt

As examples of models which provide operating characteristics of graded
item responses, the normal ogive model and the logistic model expanded for
graded items in the manner discussed in the previous chapter are introduced
here. It is needless to say that whenever we specify a model it is preferable
that the resulting operating characteristics supply the maximum likelihood
estimator ~ at least with respect to most of the possible response patterns.
The normal ogive and the logistic models expanded for graded item responses
are such models, which satisfy the requirements stated in conditions (i)
and (ii)*, as we shall see in the rest of this chapter.

On the normal ogive model, the formula for P~(0) is given 

(5-1)

where ao is an item parameter indicating discriminating power and b., is a
parameter indicating difficulty specified for each response category bound x~.
We could also write

1

where b(,o+l~ is an item response parameter indicating difficulty specified for
category bound (x, + 1), satisfying

(5-3)

From equations (5-1), (5-2) and the basic formula for the operating char-
acteristic of graded response given as equation (4-4) in the previous chapter,
we have

1
f..(o-b.~ -’’~ dr,(5-4)

and this formula gives the operating characteristic of graded item r~po~e
on the normal ogive model.

D~erentiating equation (5-4) with respect to ~, we obtain

? Thh topic h d~cussed from more general standpo~ts. See S~ej~a, [1967
~d 1968b].

23
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which equals zero only when

(5-6) 2

Since the second derivative of Px,(0) is given 

-a~ bx.]e-°°’t°-bz°]’/2 - [0- o(~.+~)je j

and this ~akes a negative value when (5-6) holds, the operating characteristic
has an absolute maximum at this point of O. Since by definition of P~(~)
and PT~.+,)(O) we have

(5-8)
and

(5-9)

the operating characteristic h~s the negative and positive terminal maxima
when x, = 0 and x~ = m~ respectively. In any other case it is 8 unimodal
cu~e, and it is symmetric, as we have from (5-4)

(5-10) P~.(o) - 1 ~-~.~o-~(.,+,)~ -’’/~ dt

_ 1

Taking (-- ~, ~) as the range of ~, we shall define A~.(0) (or A~.) 
the two asymptotes, C~..~ and C~.,~, after (3-1) and (3-2) in Chapter 3, so 

A~.(o) = (o/oe)P~(e)~.(~) ,

C.,,o_ = lo.im_~ A~,(O)~
(5-12) 4-~ 

C~o,~ lira Axo(O) 

Hereafter, we shall call A~o(~) or A~. the basic Iunction of a given graded item
response xo.

Now we shall prove that this basic function satisfies the requirements
stated in conditions (i) and (ii) presented in Chapter 3 in any case where
xo ~ 0 or m., and conditions (i) and (ii)* hold otherwise. That is to say, 
shall prove that the normal ogive model for graded responses supplies an

(5-11)

and



(5-14)

(5-15)
and

FUMIKO SAMEJIMA ~5

absolute maximum for likelihood function Lv for any possible response pattern
except for two extreme cases where all the elements are 0 or mg. In these two
cases negative and positive terminal maxima are given instead.

Proof:

We can rewrite (5-5) on this specific model in the following form:

(5-13)

Defining u, c and ~(0) such that

c =

1/%/~-~ f:_o te-’’/2 dt
(5-16) ~(0) = 1/%/~-~ f:_.o -’’/2 dl

we have from (5-4), (5-11) and (5-13)

(5-17)

We note that v(0) is the expectation of t with the distribution function N(O, 1)
for the limited range given by

(5-18) u-- c < t < u.

When x~ takes any value, 1 through (m, -- 1), both b., and b~..+~ are
finite and the above range is a function of u with ~ constant distance between
the upper and lower li~ts.

If x, is 0, the ~bove r~nge becomes

(5-19) v <

where

(5-20) v

since b,, is negative infinity in this case. Then (5-16) can be rewritten 

(5-21) ~(~) 1/~ f : te - ’’/~ dt1/~ ~7 ~-’~ d~
Similarly, if x~ is m,, the range of t is given by

(5-22) --~ < t < u,

since b(~,+, is positive infinity. The equation (5-16) can be rewritten 
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1/ V~ .~-~ te-’’/~ dt
(5-23) t~( t~) 

f~_~ dt1/v/ 
in this case.

Thus it is easily seen that ~(~) is a monotonically increasing function of 
for any value of xg, 1 through mo, and is a monotonically increasing function
of v when xo = 0, and hence it is a monotonically increasing function of ~
in any case throughout the range of ~ given by

(5-24) -¢o < ~ < ~o,

as is obvious from the definition of u and v.
Since ao is a positive constant specified for item g, from (5-17) we can

conclude that the basic function of the graded item response on the normal
ogive model is monotonically decreasing in ~ throughout the whole range
given by (5-24), and, therefore, the requirement stated in condition (i) 
satisfied.

The numerator of the right-hand side of (5-16) tends to positive and
negative infinities as ~ tends to positive and negative infinities respectively,
while the denominator tends to zero in either case, with respect to any value
of xo, 1 through (ms -- 1). This fact implies that the upper and lower asymp-
totes of the basic function are positive and negative infinities respectively, for
the value of x~, 1 through (too -- 1), as is obvious from (5-17).

If x, = 0, the numerator of the right-hand side of (5-21) tends to positive
infinity and zero as 0 tends to positive and negative infinities respectively,
while the denominator tends to zero in the former case and to unity in the
latter case. Thus the upper and lower asymptotes of the basic function are
zero and negative infinity.

If xo = ms, the numerator of the right-hand side of (5-23) tends to zero
and negative infinity as ~ tends to positive and negative infinities respectively,
while the denominator tends to unity in the former case and to zero in the
latter case. Thus the upper and lower asymptotes of the basic function are
positive infinity and zero.

We can conclude, therefore, that

(5-25) C~,.~_ = ~

for any xo, 1 through ms, and

(5-26) Co.~_ = 0,

and further,

(5-27) C~,,~ = - ¢o

for any xo, 0 through (ms -- 1), and
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(5-28) C~o.~ = 0.

Condition (ii) is satisfied for any value of x~ except for 0 and m,, and condition
(ii)* holds when xg -- 0 and x, = mg.

It is easily seen from this result that on the normal ogive model, if the
items are second dichotomously, condition (il) does not hold for any individual
response, but condition (ii)* is met instead, since in this case x~ is either 0 
m.(=l).

Thus we have proved that the normal ogive model for graded responses
supplies a unique local maximum for likelihood function Lr ~ defined in
Chapter 2, for any possible response pattern except for two extreme cases
where either all the elements are 0 or ms, in which the negative and positive
terminal maxima are given respectively. It wi]I give a unique local maximum
for the function Br, defined in Chapter 3, for every response pattern without
exception, only if a distribution of ~ satisfying the requirements stated in
conditions (iii) and (iv) is given.

It is easy for us to deduce this model for graded responses from the
assumption of bivariate normal distribution for the latent ability and an item
variable [Samejima, 1962a].

For the purpose of illustration, items C2 , D2.~ and A~.~ of the LIS
Measurement Scale for Non-verbal Reasoning Ability [Indow & Samejima,
1962, 1966] are taken here. The examinees were 883 junior high school students
in the suburbs of Tokyo in April through July 1960, boys and girls of approxi-
mately 13 through 15 years of age.

Item C2 requires an examinee to find out the principle of classification
of simple figures, as shown in Appendix. If an examinee succeeds in discovering
the principle, it will be easy for him to respond to 18 test figures correctly,
and 392 out of 883 sample examinees succeeded in so doing. There were 67
examinees among the remaining 491 students who responded to 17 figures
correctly but failed in one figure, and also 20 who succeeded in 16 figures but
failed in two figures. In these cases it may reasonably be assumed that these
87 examinees had also discovered the principle of classification somehow or
other, though in a more uncertain way than the 392 successful students, since
the probabilities of chance occurrences of these phenomena are negligibly
small. Assuming the number of test figures responded to correctly reflects the
intensity of cognition of the principle, all the examinees were classified into
four groups, that is, 392 of category 3, 67 of category 2, 20 of category 1, and
the remaining 404 of category 0.

On the other hand, both items D~.~ and A2.2 require an examinee to
discover the correspondence between alphabetical letters and numbers by
following the arithmetical reasoning processes of multiplication and addition,
which is also presented in Appendix. In these cases we can follow the exam-
inee’s attainment to some extent by tracing his protocol in the following way.
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In item D2.a, the first clue is to find out that I = 0 and then U = 9. There
were 187 examinees who had discovered these two correspondences, but failed
in proceeding further, while 202 students solved the entire problem. Thus all
the examinees were classified into three categories in accordance with the
degree of attainment, that is, 202 of category 2, 187 of category 1, and the
remaining 494 of category 0. In solving item As. ~, on the other hand, the first
clue is to find out that I = 0 and U is an even number. In this case, however,
it is more likely that an examinee will start by trial and error, since it is easily
seen that I is either 0 or 5, and yet it requires a certain amount of insight to
discover directly that it should be 0. Anyway 140 students responded to I
and U in the’ way mentioned above but failed in proceeding further, while
107 examinees solved the problem perfectly. Thus the total 883 students were
divided into three categories in this case: 107 of category 2, 140 of category 1,
and the remaining 636 of category 0.

The values of b~, were computed on these numbers in view of the assump-
tion of the homogeneous thinking process and the bivariate normal distribution
for the latent ability and each item variable [Samejima, 1962b]. In this
ease b,, is the normal deviate corresponding to the proportion of examinees
who are scored below xo , divided by the factor loading of item g on the
principal factor which was obtained by the principal factor solution of factor
analysis on the tetrachoric correlation matrix of the entire 30 LIS items being
scored dichotomously. The values of a~ were also computed from these factor
loadings [Indow & Samejima, 1962, 1966]. The resulting values are:

ag = 1/0.901, bl = --0.148, b2 = --0.067, and b3 = 0.188 for item

ag = 1/0.944, bl = 0.206, and bz = 1.018 foritemD~.~, and

a, = 1/0.863, bl = 0.766, and b~ = 1.546 for itemA~.a, [Samejima, 1962b].

In order to test the goodness of fit of the model, 12 other items were
selected from LIS, which had been dichotomously scored and whose test
scores were to be used for giving the categorization for the examinee. The
parameter values of these 12 items are presented in Table 5-1. The operating
characteristic of test score T for these 12 items was computed, which is
denoted by Pr(O), as was discussed in Chapter 1. The theoretical frequency
distribution, Gx,(T), for each graded category was computed by the formula

f?(5-29) G~,(T) = N ](O)P~o(O)Pr(O) 

where N = 883, assuming the normality, N(0, 1), for the latent distribution.
Table 5-2 presents these results in comparison with the actual frequencies,
together with x2 -values computed without joining together any categories
with small frequencies. It may be observed that the fit is fairly good for items
Ca and D:.~ , especially if we compare them with that of total examinees,
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TABLE 5-1

Item Parameters of Twelve Dichotomous Items
Selected from LIS Measurement Scale
for Non-verbal Reasoning Ability

Item 1/a b
g

Cl.1
0.77 -i.~3

A3.1
0.97 -0.86

DI.1
0.62 -0.55

D2.1
0.59 -0.52

C3.1 0.71 -0.33

A3.2 0.75 -0.31

BI.1
0.67 -0.28

A3.3
0.97 0.08

A2.1
0.72 0.W7

CI.3
1.36 1.57

DI.4
1.11 2.10

B3.3 1.13 2.36

while it is by no means good for item A2.2. This may suggest that the reasoning
process in solving item A2.2 is more heterogeneous than the others. These three
items are examples of good and poor fits among the eight items being taken up,
and the results obtained for the other five items are presented elsewhere

(cf. Samejima, 1968a, Appendix 2).
For the purpose of illustration, the operating characteristics of graded

responses for items C2 and D2.~ are shown in Figure 5-1.
We have already observed that the basic function of the graded response

on the normal ogive model is a monotonically decreasing function of O through-
out its range with positive and negative infinities as the limit values, except
for two extreme categories, 0 and mg . From the definition of A~, and (5-4)
and (5-17), we can easily see that in an asymptotic case where b~, and
tend to negative and positive infinities, we have

(5-30) lim A~, = 0.
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TABLE $-2

Observed (0(T)) and Theoz-etlcal (G(T)) Frequency Distributions of Categor-] T 
Graded Response G~oup to Items C2 ~ 02. 2 and A2.2

Item C2

12
11
I0
8
8
7
0
5
4
3
2
1
0

xg= 3

(O(T)-G(T))2
0(T) G(T) ~

9 7.42 0.33
21 28.00 1.75
58 63.03 0.~0
87 8Wo73 0.06
66 66.?5 0.01
59 47.67 2.69
36 33.15 0.25
25 23.12 0,15
14 16.05 0.26
9 10.87 0.32
4 6.88 1.20
3 3.63 0.11
1 1.14 0.02

Xg = 2

0(T) G(T) (O(T)-G(T))2G(T)

8.20 0.18
5 9.98 2.48

13 9.76 1.07
? 8.67 0.32
8 7.39 0.0~5

5 4.88 0.00
? 3.64 3.11
3 2.28 0.23
1 0.86 0.02

x = 1

(O(T)-G(T))2
0(T) G(T) 

0.02 0.02
0.22 0.22
0.98 0.00
2.25 1.37
2.90 0.42
2,98 0,00

2.~6 0.87
2.12 0.01
1.77 0.03
1.38 1.38
0.91 1.32
0.36 0.36

Xg= 0

(O(T)-G(T))2
0(T) G(T) G(T)

2 0.12 29.87
2 1.24 0.46
& 6.39 0.02

25 17.24 3.50
27 26.88 0.00
33 33.48 0.01
34 37.72 0.37
33 40.92 1.53
43 43.88 0:02
54 47.16 0.99
53 51.19 0.06
42 53.12 2.33
50 43,52 0.97

X2 = 7.5581

Item D2.2

X2 = 7.8745 X2 = 7.1426

TABLE 5-2 (Continued)

X2 = 40.1298

x =2 x = 1 x = 0
g g g

T

12

ii
10

9
8
7
6

5
4
3

2
1
0

(O(T)-G(T))2
O(T) G(T) 

i0 6.51 1.88

18 22.05 0.74

40 43.47 0.28
53 50.25 0.15
27 32.75 1.01
26 19.73 1.99

13 11.75 0.13

5 7.12 0.63
6 4.32 0.65
4 2.56 0.81
0 1.40 1.40
0 0.63 0.63
0 0.17 0.17

O(T) G(T) (O(T)-G(T))2 0(T) G(T) (0(T)-G(T))2G(T)

1 0.87 0.02
4 5.65 0.48

12 18.60 2.34
33 32.98 0.00
34 32,77 0.05
33 27.25 1.21
18 21.14 0.47

20 16.05 0.97
13 11.97 0.09

9 8.66 0.01
8. 5.85 0.79
0 3.31 3.31
2 1,13 0.68

0 0.30 0.30
2 2.68 0.17

16 12.11 1.25
37 29.22 2.07
41 40.98 0.00
49 46.92 0.09
47 49.41 0.12

42 50.73 1.50
47 51.87 0.46
57 53.45 0.24

56 55.83 0.00
50 55.99 0.64
50 44.5.8 0.66

X 2 = 10.4813 X2 = 10.4212 X2 = 7.4966

On the other hand, if we define At~ so that

(5-31) A8 = b(.+l~ - b.,

~nd could write

(5-32)

= 1/~O[{(O/Ot)P~.+.(t)
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TABLE 5-2 (Continued)

31

Total 883 Examlnees

Xg= 2

O(T) G(T) (O(T)-G(T))2G(T)

9 5.5W 2.17
15 16.67 0.17
2~ 28.44 0.59
36 27.79 2.42
14 14.48 b.02
5 7.07 0.61
0 3.46 3.46
2 1.7~ 0.04
1 0.88 0.02
0 0.43 0.43
1 0.19 3.43
0 0.07 0.07
0 0.oi 0.01

xg = i

0(T) G(T) (O(T)-G(T))2G(T)

xg = 0

O(T) G(T) (O(T)-G(T))2G(T)

OCT) G(T) (OCT)-G(T))~

1 1.44 0.1~
W 8.03 2.02
9 22.46 8.07

18 33.55 7.20
16 27.16 k.58
17 18.64 0.14
18 12.07 2.91
13 7.71 3.63
7 4.8~ 0.96

15 2.9~ h9.97
17 1.61 146.81
3 0.72 7.20
2 0.18 17.92

1 0.70 0.13
5 5.68 0.08

35 23.27 5.91
89 51.11 6.27
72 64.86 0.79
86 68.18 ~.66
60 66.78 0.69
52 64.45 2.40
58 62.45 0.32
55 51.32 0.65
46 61.28 3.81
47 59.1~ 2.49
50 ~5.68 O.ql

Ii 7.68 i.~4
24 30.38 1.3~
68 74.18 0.51

123 I12.4W 0.99
102 106.50 0.18
108 93.90 2.12
78 82.31 0.23
67 73.90 0.64
66 68,17 0.07
70 64.67 0.4q
6~ 63.08 0.01
50 59.93 1.65
52 ~5.88 0.82

X2 = 13.5272 X2 =251.5619 X2 = 28.B01~ X2 = 10.~495

and then we obtain the following equation for another asymptotic case
where b(=,.1) tends to b=,,

(5-33) lim

~ ~-~0

lim [P~.o.~,(O + aO) - P&+~,(O)]/~O
AO~O

p,,,
---

- p~, ,
#

which gives the basic function in the imaginary situation, where the degree
of attainment toward the goal of a given power test item, or intensity of
positivity toward a given attitude survey statement, is observed continuously.

On the normal ogive model, we have

(5-34) P*"=o = --a~(O-

and inserting this result into (5-33), we obtain

(5-35) lim A.o = -a~(O- b=,),
b(=~+~)"~b=e

We can easily see that the result is a straight line with (--a~) as the slope
and 0 = b,° as the cutting point of the abscissa.

For the purpose of illustration, Figure 5-2 presents the basic functions
on the normal ogive model for five cases in which a, = 1.0, and b,, and
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1.0

0.0

Item C2

Xg = I

- 3.0 - 2 0 - 1.0 0.0 1.0 2.0

8

=3

1.0
Item D2.2

x(j

0.0 ~ ~
-3.0 -2.0 - 1.0 0.0 1,0 2,0 ~.0

Fmtm~ 5-I
Operating characteristics of graded responses for items C2 and D...~ of LIS measurement

scale for Non-verbal Reasoning Ability on the normal ogive model.

are: -- 1.0, 1.0; -- 2.0, 2.0; -- 3.0, 3.0; -- 4.0, 4.0; and -- 5.0, 5.0 respectively.
The basic function of the imaginary case given by equation (5-35) when
ao = 1 and b=, = 0 is drawn by a dotted line in the same figure. We can see,
for instance, that the basic function of case (5) is practically equal to zero for
the range (-3.0, 3.0). These results are connected with the amount 
information given by an individual item response, which will be discussed in
the following chapter.

On the logistic model, the formula for P~ is given by

(5-36) P* = {1 q- e--D~’"(e-b")}-1,

where D is a scaling factor satisfying
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5.0

(4)

(5)

0.0

~ (4)

(3)

(~)%,\%
\ (11

-
-5.0 0.0 5.0

FtGURE .5--2
A,,,(O), basic function for response category ~, on ~he no~al ogive model, for five hy~-

ghefieal e~es in which ao = 1.0; and b~ and b(~,+~ are ~ ~he follo~ng.

Case (1) : b~. = --1.0, b(~,+~) = 1.0
Case (2) : b~, = -ZO, b(~,+~ = 2.0
Case (a) : b~, = --~.0, b~,+~ = ~.0
Case (4) : b~ ~ --~.0, b(~+~ ~ 4.0

(5-37) D > 0,

and, just as on the normal ogive model, ao is an item parameter indicating
discriminating power, and bx. is an item response parameter indicating
difficulty specified for category bound xg. We could also write

(5-38) P~.,+I, = {1 q- e-D°’t°-’‘ .... 7,}-1,

where

(5-39) b(~.+, > b~..

The basic formula for the operating characteristic of graded response on the
logistic model is given and developed as the following.
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(5-40) P.,(O)

= {1 - e

It is apparent from the above result that the operating characteristic of
graded response is symmetric except for two extreme eases, where x, = 0
and ~, =mo. DNerentiating this equation with respect to O, we have

(541) P~,

which equals zero only when

(5-42) 0 =
2

From these results we can easily see that the operating characteristic of
graded response in the logistic model is again unimodal and symmetric Mth
the modal point given by (5-42) for any x~ except for 0 and m,, and in these
two cases it gives negative and positive terminM maxima respectively, exactly
the same result as in the normal ogive model so far.

From (5-40) and (5-41) the basic function in the logistic model wi~ 
given by

(5-43) A~, = Da~{1 -- P.~ -- *

D~erentiating this equation with respect to ~, we have

<0

which upparently satisfies condition (i) for any x~ 
From (5-43) we obtain

for any x, satisfying Xo ~ O, and

(5-46) C~..~ = -- Da,

for any Xo satisfying Xo ~ mo, and we have
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(5-47) Co.t = 0

and

(5-48) c~,.~ = 0
for these exceptional cases. Thus we have seen that condition (ii) holds for
any graded response other than 0 and m,, and condition (ii)* holds in these
two cases. The values of asymptotes of the basic functions are different from
those on the normal ogive model given earlier in this chapter, except for
Co.t and C~,.~ which are zero in both cases.

It is easily seen from this result that in the logistic model, if the items
are scored dichotomously, condition (ii) does not hold for any individual
response, but condition (ii)* is satisfied instead, just as was the case on the
normal ogive model.

The asymptotic formulas for the basic function on the logistic model will
be given by

lim A,, = Dag { 1 -- 2P*~, }(5-49)

and

(5-50) lim A~, = 0,

again the former being quite different from that on the normal ogive model.
Although the cutting point of the abscissa is again b~, , this is not a straight
line, having finite values of asymptotes, Da~ and --Da~.

Five examples of the basic functions with the same parameter values as
on the normal ogive model are shown elsewhere (cf. Samejima, 1968a, Ap-
pendix 3) together with those on the normal ogive model.



CHAPTER 6

AMOUNT OF INFORMATION

Throughout this chapter we shall assume that the operating characteristic
of graded response is twice-differentiable with respect to 0 for the range (_0, 0-).

Let I(0) denote the amount of information given by a set of n items for
the fixed value of 0, or the information function of the test consisting of n
items. This function is defined as the expectation of the square of the first
derivative of log Lv(0) such that

0 log Lv

In view of the fact that

0 log L ~ 02 log L

holds for any likelihood function L when it is the ioint frequency function of
a sample of independent observations, (6-1) can be rewritten and rearranged
in the following way,

(6-3) I(0) -- E{O" log

o., 00~ J

ao~ JJ

where Io(O) denotes ghe amoun~ of i~ormagion given by an individual item,
for ~he fixed value of O, or ~he information funegion of item

Le~ I~,(O).be ~he informaUon function given by a specific graded response
~o item g for ~he fixed value of O, when ~he i~em is scored in a graded way.
~rom equaUon (6-g) we have

" .. .. 03 logP~(0) ....
(6-4) " i~(O)=-E{

O~ }

log P~,(O) 

37
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and finally

(6-5)

=

I,.(O)P.o(O) = {-~o A~.(O)IP,.(O)

= {__P~/ -- P~’/,+a___~}__~~ __ ~p*" _ *,,

Equation (6-5) supplies the amount of informution shared by an indivi-
dual graded response for any specified model for P~, provided that it is
t~ce d~erentiable with respect to 0. This amount of information share is the
information function of an indNidual graded response, which is the negative
of the flint derivative of the basic function, multiplied by the operating charac-
teristic as shown in equation (6-5). It is easily understood from this fact that
both on the normul ogNe and the logistic models the information share of the
individual item response, z,, should be symmetrical with 0 =
as the axis of symmet~, except for the case where x, = 0 or x, = m,, since
A~. equals zero at thut value of 0 and is symmetrical with that value as the
center of symmetry, and P~. is symmetrical with that value as the axis of
symmetry.

For the purpose of ~ustration, Figure 6-1 presents the amount of infor-
mation shares of the hdividual item responses on the normul ogive model,

0.5

~ o.~ ~- \ / \ /
0.2

0.~ .
(51

-3.0 -2.0 - 1.0 0.0 LO 2.0 3.0

Amount of information shared by each of the same hypotheticM item responses as ~ed

h Figure 5-2, on the normal ogive model.
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using the same hypothetical data whose basic functions were presented in the
previous chapter as Figure 5-2. In these instances the axis of symmetry is
0 = 0. This figure gives us an idea of optimal distance between bx, and b(xo+l),
for increasing the amount of information share for a specified range of 0. If,
for instance, we intend to get a large amount of information share for a fairly
narrow range of ~, the distance between bx, and b(=,÷1~ should not be so large,
while it should be much larger in case we want to get a moderate shure of
information for ~ wider range of ~, as is suggested by c~ses (1) and (2) 
Figure 6-1. Cases (3), (4), and (5) m~y be taken as examples where the 
tances are too large to give enough information share around O = b,, + b(,,. t)/2.

Inserting (6-5) into (64) and rearranging, we obtain

(6-6) I,(0) =,,-o ~ ~~,-o~ P~

~, ~p,, ,,

as the information function of the graded item, since we have

(6-7) ~ P~; = ~ [P*" - P*"

~ O.

for the information function of a test consistingFrom (6-3) and (6-6) we 
of n graded items

(6-8)

In the case where items are dichotomously scored, equation (6-6)
rewritten as

(6-9)

This is the information function of a dichotomous item, which was named ~he
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item information function by Birnbaum. He has made an important use of
this item information function and the information function of the test
defined in the same connection as (6-3) with respect to the estimation 
ability, devoting many sections to this purpose (in Lord & Novick, 1968).

Figure 6-2 illustrates the amounts of information given by items C~
and D2.~ of the LIS Measurement Scale for Non-verbal Reasoning Ability
when they are scored in the graded ways described in the previous chapter,
as well as dichotomously, on the normal ogive model. In the same figure the
shares of information given by the individual response categories are indicated
by dotted lines.

1.0

0.5

0.0

Item C2

~fgraded

-3.0 -2.0 - 1.0 0.0 1.0 2.0

I.O
Item D2.2
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We can see that the increment in the amount of information by being
scored in a more graded way is greater in the case of item D2.2, although the
response categories are more in the case of C2 ̄  This is again connected with
the distance between difficulty indices, as we have seen earlier in this chapter.
In fact the distance between bl and b3 in item C2 is only 0.336, while that
between bl and b2 in item D2.2 is 0.812.

The result concerning item C2 might give an impression that it is of no
use for us to set up many categories unless we can assign a considerable amount
of distance between adjacent difficulty indices. Although the amount of
information added may be small, however, this is not true. We shall prove,
therefore, that more information will be given by an item if a response
category is added between two adiacent categories.

Suppose that a given item, g, has (ms + 1) response categories, 0 through
rn~ . Let r denote a response category, x, , which is less than mo, and let
(r + 2) be its adiacent response, (x~ ~ 1). Equation (6-6) indicates that 
amount of contribution of response category r, which is to be denoted as J,,
to the total information given by item g is

{p~,, _ p~/+~) } 
(6-10) J~ = {P~* - P~r+2, }

Suppose, further, that we divide this category into two and set up one more
category, (r + 1). The operating characteristic of response r should necessarily
be changed by the establishment of this new response category and conse-
quently the amount of contribution of response r toward the entire item
information will be reduced, while that of any other original response category
remains unchanged. Let J*~ be the new ~mount of contribution given by r,
and J~+~) denote the amount of contribution given by the additional response
category, (r + 1). These amounts of contribution wiil be given 

J~* = {P~*’ ,-- *{p~* -(6-11)

and

,(6-12) J(~+~) = {P(~+~)* ,

* is a function of ~ defined in Chapter 4 and specified for responsewhere
category (r ~ 1), and P(~+~) is its first derivative.

Here we shall define S~ , a positive real number, so thut

(6-13) S, > O,

and also s~ , uny real number, ~or

(6-14) i
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By Schwarz’s inequality, we can write

(6-15) S, ’ > s, ,

and, dividing both sides of inequality (6-15) by {~:.., S~ }, we have

(6-16)

Since we could rewrite (6-10) in the following way

sl = P~*’ -- P(r÷l) 

S~ = P~ -

> 0,

(6-21) S~ = P~+~) 

>0

and

(6-22) u = 2,

and inserting these equations into (6-11), (6-12), and (6-17), we 
from (6-16)

(6-23) J$ + JS+~) S, S~

> {~ +
- 8~ + S~

Thus it has been proved that the amount of contribution resulting by
add~g a new response category (r + 1) is no less than the original one. Since
in general cases s,/8, does not coincide with s~/S~ for all the values of 0 and
an equality in (6-23) does not always hold, the amount of information
creases in the total by setting up ~ new response c~tegory. More information
will be obtained, therefore, ff more response cutegories are set up.

(6-17)

by setting

(6-18)

(6-19)

(6-20)
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Figure 6-3 presents examples of information functions obtained on the
normal ogive model, of a test consisting of six items with the same discrimi-
nating powers, in each of the three cases where 1/a~ is 0.484, 1.020, and 1.732,
respectively. In each hypothetical test b~ = --1.500 for a pair of items,
b~ = 0.750 for another pair of items, and b~ = 3.000 for the remaining two
items, when they are scored dichotomously. The resulting information
function is the lowest curve in each figure of Figure 6-3. The curve in the
middle of each figure represents the information function obtained when one
more grade is added, by using the above values of b~ as b2 for each pair of
items, and setting bl = --2.625, bl = --0.375, and b~ = 1.875, respectively.
The curve in the highest vertical position in each figure is the information
function obtained when each item is scored with four response categories, by
using the above values of b~ as b3 and setting b~ = -3.000 and b2 = --2.250
for the first pair of items, b~ = -0.750 and b~ = 0.000 for the second pair of
items, and b~ = 1.500 and b~ = 2.250 for the last pair of items. We can see
that in each of the three cases the increment in the amount of information is
especially great when one more response category is added to each of the six
dichotomous items. Especially in the case of items with high discriminating
powers the effect of the so-called attenuation paradox disappears as we can
see in the upper figure of Figure 6-3. That is to say, the amount of information
given by the six hypothetical items is very small around the values of 0 near
(--1.500 + 0.750)/2 and (0.750 -~ 3.000)/2 in a relative sense when they 
scored dichotomously, while such a conspicuous tendency does not appear in
either of the other two cases in which the items are scored in the more graded
ways.

Now we shall proceed to prove that if some aggregation of response
patterns is used instead of the response pattern itself, the amount of informa-
tion given by the test may be reduced. The simple test score and some kind
of weighted test score are typical examples of such aggregations. Let T denote
an aggregation of response patterns, and Pr(0) its operating characteristic,
as we have done in Chapter 1. We could write

(6-24) Pr(0) = By(O),
v~ T

where Pv(O) is the operating characteristic of response pattern V. Since we
have

(6-25) Lv(O) = Pv(O),

we obtain from the definition of the information function of a test given
by (6-1),

(6-26) z(o) = -° log
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FIGURE

Information functions givenby six hypothetical items, when they are scored dichotomously,
with three graded response categories~ and with four graded response categories.
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{ (O/O O)P v (0) 
= ~ Pv(O)

= E~ ~2vet Pv(O)

If we define another likelihood function, Lr(O), based on aggregation T
instead of V, so that

(6-27) Lr(0) = Pr(0),

and denote the resulting information function as I*(O), we obtain from
equation (6-24) and the definition of the information function

(6-28) i*(0) = log PT(0). 

= ~ {(O/OOIPT(O)I’P~(O)

{ ~_, (o/oo)P,,(o)l"

VET

Setting

(6-29) S, = Pv(O)

> 0,

and

(6-30) s, = ~0 By(O),

and defining u as the number of response patterns contained by T, we have
from (6-16) the following inequality

{(O/O0)Pv(O)12 I ~ (O/O0)Pv(O)}2
(6-31) ~ Pv(o) > ~e~2 P~(O)

VET

Then from this inequality and (6-26) and (6-28), we obtain

(6-32) I(0) >_ I*(0).

Thus it has been proved that the usage of aggregation T instead of
response pattern V may reduce the amount of information given by the
total test. Since the response pattern whose elements are less graded item
responses are nothing but an aggregation of response patterns whose elements
are more graded, this proof includes the former one.
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When all the items are dichotomously scored and equivalent with one
another and the simple test score is used as aggregation T, we obtain from
(6-28)

{nr(O/OO)P~(~) 
(6-33) I*(~) = 

nTDVT(O)

{(0/0 O)P~,~(O)}2
P~(O)

~(o/o~)~(~) 
= ~ P~(o)
= ~(o~,

where ~ is ~he number of ~’s contained by T and P~(O) is ~he common
operaging eharaegeris~ie of ~he response pa~gern eongained by T. Thus in ~his
ease ~here is no reduction in ~he amoun~ of information given by ~he ~es~,
e~en if we use ~esg score T instead of response pa~gem V.



CHAPTER 7

BAYES ESTIMATOR BASED ON THE RESPONSE PATTERN

When the latent density function, denoted by ](0) ,is known or reasonably
assumed, it is possible for us to obtain an estimator of 0 with which the
expectation of its mean-square error about the true value of 0 is minimized.
If we temporarily denote this estimator defined on the response pattern, V,
as 0~, its mean-square error is given by

(7-1)

where Pv(0) is the operating characteristic of response pattern V. Then the
expectation of this mean-square error over the whole range of 0 can be
expressed as

(7-2) E{O} -- 0}2/(0) dO = ~ {0*v -- 0}=Pv(0)](0) 

where ¢(V, 0) is the bivariate density function of the response pattern V and
latent variate

Let Vo denote a specified response pattern and 0go be such an estimator
on this response pattern. Differentiating (7-2) with respect to 0~o , we have

0
fro E{ O*~ -- O}~/(0) dO(7-3)

= 2 {O*~. -- O}~k(Vo, O) dO

= 2 O~. ¢(Vo, O)dO -- O~k(Vo, O)dO 

We obtain by setting the above equation equal to zero and rearranging

(7-4) O*Vo = P(Vo) ’

where P(V) is the probability of response pattern V given by

f:(7-5) P(V) = ¢/(V, O) 

Equation (7-4) is nothing but the expectation of 0 defined on the specified

47



48 PSYCHOMETRIKA MONOGRAPH SUPPLEMENT

response pattern Vo, or the first-order moment of ~ about the origin for the
latent density function specified for response pattern Vo ̄

Thus we have seen that the expectation or first-order moment about the
origin of ~ is the estimator with which the expectation of the mean-square
error over the whole range of ~ is minimized. Since this is a Bayes estimator
obtained by using the mean-square error multiplied by the latent density
function of ~ as the loss function, hereafter we shall call this estimator simply
the Bayes estimator and denote it as ~v, which is given by the formula

(7-6) ~’v - f-~ ~¢(V, ~)d~
P(V)

In view of the f~ct that the minimization of the me~n-squ~re error ~bout
the tree value of 8 is the most desirable property for an estimator when 1(~)
is known or reasonably ~ssumed, it w~l be preferable for us to t~ke ~[~ as o~
estimator whenever the necessa~ computation is uv~fi~ble.

Another big ~dv~nt~ge of using ~ as our estimator is that i~ is un-
necessary for us to restrict the functional form of the operating characteristic
of item response and Mso that of the l~tent density function ~s we h~ve to do
in order to obtain the m~ximum likelihood estimator ~ or the Bayes modM
estimator ~, since neither Pr(O) nor ](O)Pr(~) need necess~ly be unimodM
in this c~se. The operating characteristic of item response c~n be monotoni-
cMly increasing or decreasing, unimod~l or multimodM, or of ~ny shape, while
the latent density function can be rectangular, multimod~l, or ~nyth~g
else.t

Let ~ denote the v~ance of ~ defined on the density function for ~
given response p~ttern, V, or the second-order moment of ~ ~bout p~. The
squ~re root of ~r m~y be taken ~s the standard error of measurement of ~r.
We c~n write

f3~ {O -- v~}2$(V, O)dO
(7-7)

~ - P(V)

#~v
t 2

= -- {#,v} ,

wher~ ~r is the second-order moment about the origin, defined by

(7-8) v~ = f:~ O2¢(V’ O)dOP(v)
We sh~ll prove that in generM cases the expectation of the standard

errom of measurement ~ smaller when items ~re scored in ~ more graded w~y,
and Mso that the expectation of the standard errors of measurement obtMned

¯ ~ we have discussed in Chapter 3, ~nditions (i) t~ough (iv) may hold when 
tr~sfo~ed to., even if they do not meet without transformation.
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on the density function for response pattern is no more than the standard
error of measurement obtained on the density function for some kind of
aggregation of response patterns.

Let u~’r denote the estimator obtained on the density function for T,
some kind of aggregation of response patterns, as distinct from u; v. In proving
the above two propositions, it will be enough for us to show that the expecta-
tion of the standard errors of measurement with respect to u;v over all the
response patterns contained by T is no more than the standard error of
measurement with respect to u~r , since a response pattern defined on less
graded items is nothing but an aggregation of response patterns possibly
obtained when the same items are scored in a more graded way, as we have
already observed in the previous chapter.

Let tgv(a) denote the r-th moment of 0 about an arbitrary value a
defined on the density function for V, and g~’r(a) be that on the density
function for T. We could write ,

(7-9) ~r(a) 

since we have

(7-10) Pr(0) = ~
VET

Thus tgr(a), the moment of order r about an arbitrary wlue a on T, 
rewritten as the expected value of ~;r(a) over the response patterns contained
by T, no matter the value of r. From (7-9) we have

(7-11) ~ =
~ P(V)

and

~_, ,~,,p(v)
(7-12) t~r = w~

E P(V)
VET

These results make it possible to deduce the following inequality by the aid
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of Schwarz’s inequality.

(7-13) ~2r =

,p~ ~=~ (V) ~ {~v}2P(V)
VET VET

~_, P(V) ~ P(V)
VET I~’ET

,=vP(V)
VET

~_, P(V)
VET

Also from (7-13) we have

(7-14)
-- ~ P(V)

V~T

Thus it has been proved that the variance of 0 on the density function
for T is no less than the expectation of the v~riances of 0 on the density
functions for the response patterns contained by T, and also the same is true
with the standard error of measurement.

Inequality (7-13) suggests thut the variance with respect to the density
function for T coincides with the expectation of v~ri~nces with respect to the
density function for V if, und only if, the v~lues of ~ ~ are constant for all the
V’s pertaining to T. This holds in the case where all the items are dichoto-
mously scored and their item characteristic functions ure equivalent, ~nd the
simple test score is used as T, while it does not hold in general cases. Especially
when T is taken as a response p~ttern and V is also a response pattern obtained
by rescoring items in u more graded w~y, it never h~ppens that M1 the values
of ~[~ for V’s contained by T ~re constant, if more than one V is contained.
Thus we can see that in the more graded w~y items are scored, the less will
become the expectation of the variances, and hence the same is true for the
expectation of the standard errors of measurement. Inequality (7-13) also
suggests that the standard error of measurement on the density function for
T ~grees with the expectation of stund~rd errors of measurement ~th respect
to the density functions for V if, and only if, the vMues of ~ are constant
for all the V’s contained by T, in addition to the requirement stated above.
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0.66200 0.41611 0.00310
0.35283 0.35299 0.000%0
0.59970 0.40|42 0.00084
0.3009% 0.36781 0.00026
0.52517 0.38837 0.00048
0.26909 0.~I03 O.OOOO8

= 1 1 1 1 0 0 0 0.08684 0.~1351
: .I I I 0 I 0 0 0.17651 0.4125%
= 11 0 I I 0 0 0.109%5 0.40683
= 1 0 ~ I 1 0 0 --0.11502 0.38108

"0 I I 1 I 0 0 0,07554 0.39669
= I 1 I 0 0 1 0 0.2637~ 0.40527

l 1 0 1 0 1 0 0.19729 0.39788
= I 0 I I 0 1 0 --0.02653 0.36646
= 0 1 1 1 0 1 0 0.16059 0.38776
= t I 0 0 1 1 0 0.27982 0.40027
= I 0 I 0 I I O" 0.04409 0.36282
= 0 1 I 0 I I 0 0.23883 ,0.38943

1 0 0 I ~ I 0 .---0.00567. 0.36086
= 0 1 0 11 I 0 0.17808 0.38286

0 0 I I I I 0 --0.02802 0.35415,
= 1 l 1 0 0 0 1 0.~7503 0.39575-
: I I 0 I 0 0 1 0.21146 0.38902
= I 0 I I 0 0 I -0.00527 0.35938,

0 ] 1 l 0 0 I 0.17576 0.37965
= I I 0 0 1 0 1 0~29006 0.3910~
= 1 0 1 0 1 0 1 0.06230 0.35601
= 0 1 I 0 I 0 1 0.250%7 0.3810~

1 0 0 I i 0 I 0.01421 0.35~1%
= 0 1 0 11 0 1 0.19212 0.37502

0 0 I 1 I 0 | --0.00806 0.34783
= l 1 0 0 0 ~ [ 0.36403 0.38775

,= 1 0 1 0 0 1 1 0.13111 0.3~78°

= 0 1 1 0 0 1 1 0.32180 0.37728
.i 0 0 I 0 1 I 0.084%1 0.34510

= 0 1 0 1 0 11 0.26316 0.37001
0 0 1 1 0 1 1 0.06064 0.~898

= 1 0 0 0 1 1 I 0.14587 0.3%396
= 0 1 0 0 I 1 I" 0.33415 0.37355
= O 0 I 0 1 I 1 0.1200% 0.33768
= 0 0 0 1 1 _I I 0.0762% 0.33506

0.02241
0.01526
0.00%78
0.00484
0.01187
0.00780
0.00215
0.00243
0.00602
0.00[47
0.0018%
0.00105
0.00122
0.0003~
0.00606
0.00396
0.00107
0.00123
0.00308
0.0007~
0.00094
0.00052
0.00062
0.00017
0.00172
0.00037

-0.00052
0.00025
0.00033
0.00008
0.00018
0.00026
0.00006
0.0000%

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4__
4
4
4
4

4
4
4
4
4
4
4
4

4
4
4
4
4



TABLE 7-1 (Continued)

1
Response Pattern ~V [~2V]~ P(V) T

RESP{ 65 = I I [ 0 0 0 0 -0.13404 0.41280 0.03048 3
RESP( 66 = [ I 0 [ 0 0 0 --0.19694 0.41136 0.02335 3
RESP( 67 = [ 0 1 [ 0 0 0 -0.40396 0.40475 0.01085 3
RESP{ 68
RESP{ 69
RESP| 70
RESP! 71
RESP( 72
RESP| 73
RESP( 74
RESP( 75
RESP( ?6

-0.21633 0.40141 0.00777 3
-0.10364 0.40491 0.01462 3
--0.30789 0.39060 0.00604 3
--0.12709 0.39516 0.00481 3
--0.36363 0;39348 0.00492 3
--0.18454 0.39352 0.00367 3
-0.37323 0.38500 0.00167 3
--0.00454 0.39185 0.00663 3
--0.20201 0.37085 0.00240 3

RESP[ 77 0 [ I 0 0 I 0 -0.03119 0.38256 0.00215 3
RESP| 78 = I 0 0 I 0 I 0 -0.25210 0.37154 0.00188 3
RESP( 79 = 0 I 0 1 0 I 0 -0.08570 0.37948 0.00158 3

=80
81
82
83

85
86
87
88
89
90
91

RESP(
RESP{
RESP(
RESP{
RESP|
RESP(
RESP(
RESP!
RESP(
RESP[
RESP(
RESP(

-0.26553 0.36438 0.00063 3
-0.17523 0.36411 0.00114 3
--0.00859 0.37706 0.00105 3
-0.19129 0.35729 0.00038 3
-0.23765 0.35755 0.00030 3

0.01812 0.38396 0.00329 3
-0.17392 0.36369 0,00115 3
-0.00843 0.37527 0.00106 3
--0.22216 0.36427 0.00089 3
--0.06107 0.37240 0.00078 3
-0.23623 0.35756 0.00030 3
-0.14901 0.35738 0.00055 3

RESP{ 92 ~ 0 1 0 0 1 0 1 0.01267 0.37006 0.00052 3
RESP[ 93 = 0 0 1 0 1 0 1 -0,16547 0,35096 0,00018 3
RESP( 94 = 0 0 0 I I 0 1 -0.21028 0.35115 0.00014 3
RESP{ 95 I 0 0 0 0 I 1 -0.06924 0.34543 0.00024 3
RESP( 96 = 0 [ 0 0 0 [ [ 0.08945 0.36235 0.00025 3
RESP[ 97 0 0 1 0 0 1 | --0,08762’ 0,33944 0,00008 .3 ....
RESP( 98 = 0 0 0 1 0 [ 1 -0,12985 0,33860 0,00006 3
RESP( 99 = 0 0 0 0 I 1 1 -0,06833 0.33494 0,0000~ 3

RESP[ IO0 = I 10. 0 0 0 0 --0°4208[ 0,41766 0,03352 2
RESP( 101 = 1 0 1 0 0 0 0 --0,63285 0,42749 0,02047 2
RESP( 102 T 0 I I 0 0 0 0 -0.42937 0.40727 0.01136 2
RESP[ 103 1 0 0 1 0 0 0 --0,70363 0,43795 0,01887 Z
RESP[ 104 0 I0 I 0 0 0 -0.49017 0.40960 0.00969 2
RESP( I05
RESP( 106
RESP( 107
RESP( 108
RESP[ 109

RESP[ III
RESP( I12

RESP[ 114
RESP| II5

RESP( II7
RESP| 118

RESP{ 120

-0,69591 0,42498 0,00640
--0,57687 0,41172 0,00871
--0.38801 0.39771 0o005~2
-0.57666 0.40149 0.00297
--0.63744 0.~0850 0.0026~

--0.27200 0.37948 0.00192
--0.4~293 0.37366 0°00096

--0.40738 0.36513 0.00043
--0.39918 0.37387 0,00128

-Q.40660 0.3664~ 0,00044
-0,45fi43 0,36953 0,00037

--0o27966 0.34238 0.00008

RESP( 121
RESP( 122

R£SP( |24
RESP( 125

RESP{ 127

= 1 0 0 0 0 0 0 -0.99611 0.48452 0.05555
= 0 1 0 0 0 0 0 -0.72121 ,0.42328 0.02054

= 0 0 0 I 0 0 0 --1,06392 0.48843 0,01946
ffi 0 0 0 0 I 0 0 --0,88125 0,43948 0,00696

= 0 0 0 0 0 0 I -0.6~400 ~.38568 -0.00072

RESP( 128 } 0 0 0 0 0 0 ~ -[,49598 0,59447 0,10501 0

TOTAl |.00000
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Again this holds when all the items are dichotomously scored and equivalent
and the simple test score is used as T, but is not true in general.

For the purpose of illustration, ~v and its standard error of measurement
with respect to every possible response pattern are computed for LIS-U
[Indow & Samejima, 1962, 1966], with N(0, 1) as the c.d.f, of the latent
ability. Table 7-1 presents these results together with P(V) and T, which is
simple test score in this case. LIS-U consists of seven non-verbal reasoning
items including item C~ illustrated in Appendix. All the items are scored
dichotomously in this case, and the item characteristic functions have been
obtained from the tetrachoric correlation coefficients for the pairs of item
variables on the assumption of bivariate normal distribution concerning the
latent ability and each of all the 30 item variables of LIS scale. Item param-
eters thus obtained for these seven items on the normal ogive model for
dichotomous items are shown in Table 7-2, where ao is the discrimination
index and b~ is the difficulty index.

We can see from Table 7-1 that there is a considerable variety among the
values of ~v for the response patterns belonging to the same test score
category, as well as among the values of {~},/2, the standard error of
measurement. For example, the highest of all the ~Ir’s in the test category 6
is approximately 1.053, while the lowest is 0.521, and the difference is about
half of the standard deviation of the latent distribution. To make this point
more obvious, Table 7-3 presents the bivariate frequency distribution of the
128 possible response patterns with respect to the value of ~’~ and test
score T. Except for the two extreme categories where only one response
pattern belongs to each, response patterns contained by one test score category
distribute for more than or equal to five categories of ~.

The values of the estimate ~;r and its standard error of measurement
are also computed with respect to every test score category and are shown in
Table 7-4. In the same table are the values of expectation of the standard

TABLE 7-2

Item Parametems fo~ the Seven Items of LIS-U and
fom Those of the Hypothetical Tests i and 2

LIS-U~

1/ag

Hypothetical l/ag
Test 1

, 5~

Hypothetical! ifag
Tes.t 2

b$

1 2 3 ~ 5 6

0.970 0.590 0.980 1.250 0.900 0.720.

-0.~60 -0.520 -0.220 -01030 0.190 O.W70

1.333 0.~8~ 1.732 0.750 3.180 1.020

-I.500 -I.000 -0.500 0.000 0.500 1.000

3.180 3.180 3.180 3.180 3.180 3.180

-1.500 -I.000 -0.500 0.000 0.500 1.0O0

7

0.730

0.760

2.293

1.500

.180

1.500
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TABLE 7-3

Bivariate Frequency Distribution of the 128 Possible Response
’ and Test Score T of LIS-UPatterns Concerning Estimate ~IV

(Greater . . 
or Equal) (Less 

-2.0 -- -1.9
-1.9 -- -[.8
-1.8 -- -1.7
-I.7 -- -1.6
-1.6 -- -1.5
-1.5 -- -1.4
-I .4 -- -I.3
-I.3 -- -1.2
-1.2 -- -I.i
-I.i -- -i.0
--I.0 ---- --0.9
--0.9 ---- --0-8
--0.8 ---- --0.7
-0.7 ---- --0.6
--0.6 ---- --0.5
--0.5 ---- --0.4
--0.4 ---- --0.3
--0.3 ---- --0.2
--0.2 --- --0.I
-0.i ---- --0.0
--0.0 ---- 0.I

0.I ---- 0.2
0.2 --- 0.3
0.3 ---- 0.4
0.4 ---- 0.5
0.5 --- 0.6
0.6 ---- 0.7
0.7 --- 0.8
0.8 -- 0.9
0.9 -- 1.0
1.0 -- i.I
I.I -- [.2
1.2 -- I .3
1.3 -- 1.4
1.4 -- 1.5
1.5 -- 1.6
1.6 --- 1.7
1.7 -- 1.8
1.8 -- 1.9
1.9 -- 2.0

0 1 2 3 4 5 6 7 TOTAL

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 I
0 2 0 0 0 0 0 0 2
0 I 0 0 0 0 0 0 I
0 I I 0 0 0 0 0 2
0 2 3 0 0 0 0 0 5
0 0 2 0 0 0 0 0 2
0 0 9 i 0 0 0 0 IO
0 0 3 3 0 0 0 0 6
0 0 3 8 0 0 0 0 Ii
0 0 0__ II i 0 0 0 12
0 0 0 9 5 0 0 0 14
0 0 0 3 8 0 0 0 II
0 0 0 0 I0 0 0 0 I0
0 0 0 0 8 4 0 0 12
0 0 0 0 3 2 0 0 5
0 0 0 0 0 7 0 O 7
0 0 0 0 0 6 I 0 7
0 0 0 0 0 2 0 0 2
0 0 0 0 0 O 0 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 2 0 2
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

TOTAL i 7 21 35 35 21 7 I 128
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7

6

5

q

3

2

1

0

TABLE 7-q

’ Its Standard Error of Measurement {~2TEstimate ~lT ’

and Expectation of the Standard Errors of Measurement of

~V over All the Response Patterns Contained by Test

Score Category T on LIS-U

!
~ Amount Number of Res-

UlT {~2T}2 E[{~2V}2] of ponse Patterns

Reduction Contained

1.47908 0.58765 0.58765 0.00000 1

0.89062 0.40409 0.45828 0.00781 7

0.q9239 0.42493 0.41548 0.00S45 21

0.15098 0.q1259 0.q0088 0.01172 35

-0.17773 0.41447 0.39992 0.01454 35

-0.5290q 0.~3379 0.41597 0.01781 21

-0.94395 0.48255 0.46765 0.01~90 7

-I.W9598 0.594q7 0.59q~7 0.00000 1

errors of measurement of ~v over all the response patterns contained by the
test score category, computed in accordance with the formula given by the
right-hand side of (7-14). The amounts of reduction in the standard error 
measurement are approximately 0.008 through 0.018 in this instance, except
for the two extreme score categories each of which contains only one response
pattern. These values of reduction are not so large, as is expected from the
fact that all the discriminating powers of the items in LIS-U are uniformly
high, as we can see in Table 7-2.

For the hypothetical test 1, which also consists of seven items, both the
variety in the values of g~v within a test score category and the reduction in
the standard error of measurement are much larger than those of LIS-U, as
we can see in Tables 7-5 and 7-6. The discriminating powers of these seven
hypothetical items have been set up to be considerably different from one
another and have been arranged randomly, as shown in Table 7-2. They were
computed on the assumption that the correlation coefficients between item
variables and latent ability are 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 respectively,
which is not unrealistic. The normal ogive model for dichotomous items was
applied and N(0, 1) was used as the latent distribution, just as in the case
of LIS-U.

With this hypothetical set of data the amounts of reduction in the
standard error of measurement are 0.034 through 0.095 and approximately
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TABLE 7-5

Bivariate Frequency Distribution of the 128 Possible Response

Patterns ConcePning Estimate ~IV and Test Score T

of Hypothetical Test 1

(Greater- - _ . 
or Equal X Less )"

-2.0 -- -1.9
-1.9 -- -1.8
-1.8 -- -1.7
-1.7 -- -1.6

0 1 2 3 ~* 5 6 7 TOTAL

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

-1.6 -- -1.5
-1.5 -- -1.4
-1.4 -- -I.3

0 0 2 0 0
0 0 3 0 0
0 1 0 2 0
0 I 2 2 0
0 0 5 1 I
0 1 1 6 0
0 0 3 5 3
0 0 1 4 5
0 0 1 3 3
0 0 1 2 3
0 0 i 2 I
0 0 0 3 2
0 0 0 3 3

0 0 0 2
0 0 0 3
0 0 0 3
0 0 0 5
0 0 0 7
0 0 0 8
0 0 0 II
0 0 0 I0
2 0 0 9
1 0 0 7
3 0 0 7
0 I 0 6
0 0 0 6
i 0 0 6
i 0 0 4
2 0 0 6
2 0 0 4
2 0 0 3
2 1 0 4
2 0 0 2
1 2 0 3
1 0 0 1
1 0 0 1
0 l 0
0 1 0 1
0 1 0 1
0 0 0 O
0 0 I 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

-1.3 -- -1.2
-1.2 -- -I.I
-I.i -- -I.0
-i.0 -- -0.9
-0.9 -- -0.8
-0.8 -- -0.7
-0.7 -- -0.6
--0.6 -- -0.5
-0.5 ---- -0.4
-0.4 -- -0.3
-0.3 -- -0.2
-0.2 -- -0.I
-0.I -- -0.0

0 0 0 1 4
0 0 0 1 2
0 0 0 0 4
0 0 0 0 2
0 0 0 0 I
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

-0.0 -- 0.I
0. i -- 0.2
0.2 -- 0.3
0.3 -- 0.4
0.4 -- 0.5
0.5 -- 0.6
0.6 -- 0.7
0.7 -- 0.8
O. 8 -- 0.9
O.9 -- 1.0
1.0 -- I.I
I.I -- 1.2
1.2 -- 1.3
1.3 -- 1.4
1.4 -- 1.5
1.5 -- 1.6
1.6 -- 1.7
1.7 -- 1.8
1.8 -- 1.9
i .9 -- 2.0

TOTAL I 7 21 35 35 21 7 I 128
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TABLE 7-6

!

Its Standard Error of Measurement {~2T}~Estimate ~IT’ ’

and Expectation of the Standard Errors of, Heasurement of

~iV over All the Response Patterns Contained by Test
Score Category T on Hypothetical Test 1

T

Amount Number of Res-
!

~T {~2T }~ E[{~V}~] of ponse Pa~terns

Reduction Contained

1.48517 0.69298 0.69298 0.00000

1.04789 0.66750 0.63~92 0.03359 7

0.59583 0.63138 0.58068 0.05069. 21

0.15052 0.59543 0.53435 0.06108 35

-0.29143 0.56817 0.49626 0.07191 85

-0.75610 0.57412 0.47933 0.09479

-1.26858 0.57442 0.51220 0.06223 7

-1.72305 0.59884 0.59884 0.00000 1

5% through 17% of the values of {~r} ~/~ for test score category T. The
values of the Bayes estimate ~ and its standard error of measurement
{~}~/~ with respect to every possible response pattern are given elsewhere
(cf. Samejima, 1968a, Appendix 4).

On the other hand, for the hypothetical test 2, also consisting of seven
items, the variety in the values of ~r within a test score category is so small
that the reduction in the standard errors of measurement is almost nothing,
as is obvious from Tables 7-7 and 7-8. In this hypothetical set of data the
discriminating powers of the items ~re of the lowest value of those in hypo-

thetical test 1, as shown in Table 7-2, and all the other conditions are the same
as those in the previous instance.

All the above results are naturally expected from the fact that simple
test scores are sufficient statistics on the normal ogive model for dichotomous
items if all the items are equivalent [Lord, 1953] and on the logistic model if
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TABLE 7-7

Bivariate Frequency Distribution of the 128 Possible Response

Patterns Concerning Estimate ~IV and Test Score T

of Hypothetical Test 2

-(Greater
or Equal)(Less

-2.0 -- -1.9
-1.9 --- -1.8
-1.8 -- -1.7
-1.7 -- -1.6
--1.6 -- --1.5
-1.5 -- -1.4
-1.4 -- -1.3
-1.3 -- -1.2
-1.2 -- -I.I
-I.I -- -I.0
-i.0 -- -0.9
-0.9 -- -0.8
-0.8 -- -0.7
-0.7 -- -0.6
-0.6 -- -0.5
-0.5 -- -0.4

0 1 2 3 4 5 6 7 TOTAL

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 5
0 2 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 21 O 0 0 0 0 21
0 0 0 0 0 0 0 0 0

-0.4 -- -0.3 0 0 0 0 0 0 0 0 0
-0.3 -- -0.2 0 0 0 0 0 0 0 0 0
-0..2 -- -0. I 0 0 0 35 0 0 0 0 35
-0.I -- -0.0 0 0 0 0 0 0 0 0 0
-0.0 -- 0.I 0 0 0 0 0 0 0 0 0

O.I -- 0.2 0 0 0 0 35 0 0 0 35
0.2 -- 0.3 0 0 0 0 0 0 0 0 0
0.3 -- 0.4 0 0 0 0 0 0 0 0 0
0.4 -- 0.5 0 0 0 0 0 0 0 0 0
0.5 -- 0.6 0 0 0 0 0 21 0 0 21
0.6 -- 0.7 0 0 0 0 0 0 0 0 0
0.7 -- 0.8 0 0 0 0 0 0 0 0 0
0.8 -- 0.9 0 0 0 0 0 0 2 0 2
0.9 -- 1.0 0 0 0 0 0 0 5 0 5
1.0 -- I.I 0 0 0 0 0 0 0 0 0
1.1 -- 1.2 0 0 0 0 0 0 0 0 0
1.2 -- 1.3 0 0 0 0 O 0 0 I i
1.3 -- 1.4 0 0 0 0 0 0 0 0 0
1.4 -- 1.5 0 0 0 0 0 0 0 0 0
1.5 -- 1.6 0 0 0 0 0 0 0 0 0
1.6 -- 1.7 0 0 0 0 0 0 0 0 0
1.7 -- 1.8 0 0 0 0 0 0 0 0 0
1.8 --- 1.9 0 0 0 0 0 0 0 0 0
1.9 ---- 2.0 0 0 0 0 0 0 0 0 0

TOTAL 1 7 21 35 35 21 7 i 128
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TABLE 7-8

Estimate PiT ’ Its Standard Error of Heasurement {P2T

and Expectation of the Standard Errors of Measurement of

’ over All the Response Patterns Contained by Test
~IV

Score Category T on Hypothetical Test 2

7

6

5

4

3

2

1

0

* ~ount Number of Res-

~T {~2T }~ E[{~2V} ] of ponse Patterns

Reduction Contained

1.28186 0.85506

0.90908 0.84708

0.54291 0.84189

0.18055 0.83933

-0.18055 0.83933

-0.54291 0.84189

-0.90908 0.84708

-1.28186 0.85506

0 85506

0 84704

0 84184

0 83930

0 83930

0 84184

0 84704

0.85506

0.00000 1

0.00004 7

0.00004 21

0.00004 35

0.00004 35

0.00004 21

0.00004 7

0.00000 1

all the discriminating powers of the items are of the same value [Birnbaum,
in Lord & Novick, 1968], and that among the above three sets of data hypo-
thetical test 2 is nearest to the situation of equivalent items and hypothetical
test 1 is the farthest from it. The values of individual #~v for the hypothetical
test 2 are given elsewhere (cf. Sameiima, 1968a, Appendix 4).



CHAPTER 8

THE MEAN-SQUARE ERRORS OF ESTIMATORS

As was observed in the previous chapter, the expectation or the first-order
moment of 0 specified for the density function for response pattern V is the
estimator for which the expectation of the mean-square error about the true
value of 0 is minimized.

Again it is easily seen that the expectation of the mean-square error
of #; r, defined on the density function for aggregation T, is no less than that
of #~, defined on the density function for response pattern V, because of the
fact that

(s-l)

and

(s-2)

= ~p(T).f:~ {0 -- u;TI:P,(0)](0)dO
r P(T)

= ~ ~,TP(T),
T

where P(T) is the probability of T specified in connection with the latent
density function ](0), and that the following inequality has been obtained
in the previous chapter.

~, #~rP(V)
(s-a) #:r ve t   ,

V~ T , ¯

Thus we have
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# f_°(8-4) E{#;r -- 0}~](0) dO >~ E{tz~F -- 0}~](0) dO.

An equality holds in (8-4) when all the items are scored dichotomously
and their item characteristic functions are equivalent, if we take the simple
test score as T and the response pattern as V, while a strict inequality always
holds if we take the response pattern of less graded item responses as T and
that of more graded responses as V, as exactly in the same way as discussed
in the previous chapter.

Figure 8-1 presents the mean-square error computed by the formula

LIS-U
~.0

2.0

1.0

0.0

3.0

2.0

1.0

0.0

-3.0 -~.0 -I.0 0.0

Hypothetical Test I

Fmua~ 8-1

1.0 2.0 $.0
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4.0

5.0

2.0

1.0

0.0 i I I I I I
- 3.0 - 2.0 - 1.0 o.0 1.0 2.0 3.0

FmURE 8--1 (Continued).

Mean-square error (solid line) as a function of t~ with ~v as the estimator, and also
the variance (dotted line) of v~r for the fixed value of 0, for LIS-U, Hypothetical Tests
1 and 2.

(s-5) E{,;v- 0}2= ~: {,~v- e}2p.(o),

for the fixed value of ~, and expressed as a function of ~, drawn by solid line,
for each of LIS-U, hypothetical set of data 1 and 2, which were introduced
and described in the previous chapter. In the same figure is plotted the
variance of the Bayes estimate ~ for the fixed value of ~ (dotted 5ne). Since
we have for any estimator ~* the variunce for the fixed value of ~ expressed us

(8-6)

and the following equation

(8-7)

holds, the discrepancy between two cu~es in each figure of Figure 8-1 is the
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expectation of the square of the bias of t*~v in estimating the true value
specified for each of these three sets of data.

We can see from these results that in the case of LIS-U the mean-square
error is small for a considerably wide range of 8, approximately -1.75
through 1.75, and almost the same is true for hypothetical test 1, while it is
by no means small in the case of hypothetical test 2, except for a very narrow
range of t~ around 0.0. On the other hand, the variances are uniformly small
for the entire range of ~ in all the three instances, and the amount of bias is
the greatest in hypothetical test 2, as is expected from the fact that the
discriminating powers of the items in this test are so poor that very little
information is given by these items.

The expectation of Bayes estimator for the fixed value of 0 is given by
the formula

(8-8)

and it has been computed and plotted against ~ with solid lines in Figure 8-2
for these three sets of data. It is observed that in each case the expectation
of the estimates for the fixed value of ~ is larger than the true ability value at
the lower part of the continuum, while it is smaller than the true ability value
at the higher part of the continuum. This tendency of regression results from
the specification of I(8) as the standard normal density, and is the most
conspicuous in the case of hypothetical test 2, while it is much milder in the
others, especially in LIS-U. In this instance the regression is practically nll
for the range of 0 --1.0 through 1.0.

These values can also be obtained with t~r as the estimator when the
simple test score is used as T and compared with the above results obtained
with respect to ~r ¯ All the dicsrepancies between these two corresponding
sets of values concerning hypothetical test 2 proved to be practically nil, as is
expected from the results obtained about the expectations and their standard
errors of measurement in the previous chapter. The discrepancies are larger
in the case of LIS-U and ~re much l~rger in hypothetical test 1. The upper
figure of Figure 8-3 illustrates the mean-square error obtained on uf r, which
is drawn by dotted line, in comparison with that on u~ r, drawn by solid line,
in the case of hypothetical test 1..The discrepancy between these two values
is small for the range of 0 --1.0 through 1.0, but it is larger outside of this
range. In the same figure are ~lso plotted the values of mean-square error
multiplied by I(0) and S, again wi th dotted and solid li nes respectively.
They are the lower two curves in this figure. It is apparent that the area under
the dotted curve is considerably larger than the one under the solid curve.

These areas computed for the range of 8, --3.0 through 3.0, ,concerning
these three sets of data by
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(8-9)

and

(8-1o)

f~3.0
~V f~3.0

E{u’lv -- 0}~](0) dO -- {U~v -- O}~Pv(O)](O) 
--3,0

E{ta~r -- O}=f(O) dO = {u~r -- O}=Pr(O)](O) 

are shown in Table 8-1. The discrepancy of the areas in hypothetical test 1 is
almost eight times as much as that in LIS-U.

3.0

2.0

l.O

0.0

-I.0

-2.0

LIS-U

-3.0 -2.0 - 1.0 0.0 1.0 2.0 3.0

3.0

2.0

1.0

0.0

-I.0

-2.0

Hypothetical Test I

-3.0 -2.0 -I,0 0.0 1.0 2.0 3.0

Hypothetical Test 2
3.0

2.0

1.0

0.0

-I.0

-2.0

-5.0 -20 -I.O 0.0 I.O 2.0 3.0

:Expectations of u~v (solid line) and iv (dotted line) plotted against 0, for LIS-U, Hypo-

thetical Tests 1 and 2.
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FIGURE 8--3

Mean-square error computed with ~ r as the estimator (dotted U-shape curve, in the
upper figure) and with ~r as the estimator (solid U-shape curve, in the upper figure), 
also mean=square error with OT as the estmaator (dotted U-shape curve, in the lower figure)
and with t~r as the estmaator (sohd U-shape curve, in the lower figure) for Hypothetical
Test 1. Lower curves in each figure are these values multiplied by f(t~) and 2 drawn inthe
corresponding manner.
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TABLE 8-1

Areas under the Mean-Square Error Multiplied by f(8) x 102 , and Also

Those under the Variance for the Fixed Value of e Multiplied by

f(e) x 102 , for the Range of 8 -3.0 through 3.0, with Each

’ ~ and eT as the Estimator, forof ~IV ’ ~lT ’ V

LIS-U and Hypothetical Tests 1 through 5

~ Mean-Square Error Variance (Conditional)

r.p. t.s. dif. r.p. t.s. dif.

~ 0.2098 0.2181 -0.0083 0.1532 0.1589 -0.0057
LIS-U

0 0.2133 0.2217 -0.0084 0.1293 0.1339 -0.0046

’ 0.2949 0.3580 -0 0631 0 1965 0.2226 -0 0261~l " " "
Hp. 1

~ 0.2984 0.3617 -0.0633 0.1740 0.1948 -0.0208

’ 0,6924 0.6925 -0,0001 0 2060 0.2060 0 0000
Hp. 2 ~i " "

0 0,6923 0,6924 -O,0001 0,2010 0,2028 -0,0018

p~ 0.3159. 0.3753 -0,0594 0.1994 0.2226 -0.0232
Hp, 3

8 0.3194 0.3798 -0,060~ 0.1809 0,2016 -0.0207

Hp. 4 Pl 0.2674 0.2681 -0.0007 0.1940 0.1943 -0.0003

e 0.2680 0.2588 -0.0008 0.1777 0.1774 0.0003

, 0.2q05 0.2405 0.0000 0.1707 0.1707 0.0000

Hp. 5 ~i^
0 0.2432 0.2432 0.0000 0.1468 0.1468 0.0000

Illustrated in the same table are the values obtained by

f.8o0

(8-11) E{#;v -- E{#Iv} }2I(0) dO

= ~-8.o {#Iv -- El#Iv} }=P~(O)I(O) dO
and

(8-1~)
--8.0

= ~ {.It -- E{./r} }=Pr(O)/(O) dO,
8.0

and Nso the values obta~ed by substituting ~ for ~I~, and ~r for ~fr, ~
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(8-9) through (8-12), where ~v is the Bayes modal estimate obtained by using
the entire response pattern and ~r is that obtained on test score T. These
values of the Bayes modal estimate ~v and ~r are computed and are presented
elsewhere (cf. Samejima, 1968a, Appendix 5) together with the values 
maximum likelihood estimates ~ and ~r obtained with Lr and Lr as the
likelihood functions respectively, for these three sets of data. Also presented
in Table 8-1 are the corresponding values for three other hypothetical tests
consisting of seven dichotomous items. In hypothetical test 3 the difficulty
parameters are --3.1, -1.2, -0.9, --0.5, 0.0, 0.8, and 1.1, and all the other
conditions are the same as those in hypothetical test 1. In hypothetical test 4
all the discrimination parameters are 1.0, and otherwise the conditions are the
same as in hypothetical data 1 and 2. In hypothetical test 5 all the items are
equivalent, with 0.0 as the difficulty parameters and 1.0 as the discrimination
parameters, and the other conditions are the same as in the other tests.

The comparison of the results obtained on estimator g~ and ~ suggests
the remarkable resemblance between two sets of estimates, g~ and ~, in every

5.0

4.0

5.0

I
!

I
I

I
I

I
I

I
I

I
I

I I
I I

i I II

I. 0

~,/~,~’ ~,///

0.0 /~ I I I I 1

-~.0 -2.0 - 1.0 0.0 hO 2.0 ~.0

Fm~R~ 8~

Mean-squ~re error computed with ~ ~s the estimator for LIS-U (solid line), for Hypo-
thetical Test 1 (smM1 dotted line) and for Hypothetical Test 2 (l~rge dotted line).
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LIS-U
2.0

1.0

0.0

-I.0 ¯ t°

! I
-I.0 0.0 1.0

P’~v

Hypothetical Test I
2.0

1.0

0.0

-I .0

"C// ~ I I I
-I .0 0.0 1,0

~;v 2.0

Fmuz~ 8-,5

~ plot~d sgsir~t #~, , w~th respect to ~2~ response pat~e~s obtained on LTS-~, ~ypo-
thetical Tests 1 ~nd 2.
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Hypothetical Test Z
2.0

1.0

-I.0

FIGURE 8--5 (Co~inued).

case. To make this point clearer, the mean-square error for estimator ~v was
computed for the first three sets of data, and the results are illustrated as
Figure 8-4. Comparing this with Figure 8-1, we can see that the results are
very similar. Although the expectation of mean-square error is the smallest
when we take ~v as the estimator, as was already discussed in the previous
chapter, that of the mean-square error with ~r as the estimator is also small.
In fact in hypothetical test 2 the difference between these two kinds of
mean-square errors is practically nil.

The expectation of estimator ~v for the fixed value of 0 is plotted in
Figure 8-2 with dotted lines, for the three sets of data. In LIS-U and hypo-
thetical test 1, regression is a little more conspicuous than in the case of
estimator ~v, but on the whole these two expectations are similar.

The comparison of the mean-square errors in hypothetical test 1 between
those obtained on ~v and those on ~r is also done and is illustrated in the
lower figure of Figure 8-3 in the same way as those on ~[v and ~r were done.
Again the discrepancy, that is, the reduction in the mean-square error by
using the entire response pattern instead of the test score, is small for the
range of 0 -- 1.0 through 1.0 but is larger outside of this range, and the area
under the lower dotted curve is considerably larger than that under the
lower solid curve, in a manner similar to the one in the previous case.

Figure 8-5 presents the values of ~r plotted against the values of ~; ~ with
respect to all the 128 possible response patterns, obtained on LIS-U, hypo-
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theticM test 1 and 2. Although the manners of divergence of these plots are
remarkably different from test to test, the correlations between two sets of
estimates proved to be uniformly high.

The correlation coefficient, R,,,v~Iv , between the two sets of estimates
given by

Coy
War {~’IA V~r

(s-13)

where

(S-i4)

(8-15)

~nd

(8-16)

.{0._ i::
w~s computed for the s~ sets of d~t~ shown in T~ble 8-1. These wlues ~m
presented in Table 8-2, together with the wlues of the wfiances and co-
v~fiances for the entire r~nge of O. As is expected from the resets so far, the

TABLE 8-2

Expectation of B{V , Expectation of ~V " Covarlance of

B[V and ~V ~ Varlanee of B~v , Vamianee of ~V ’ and
Cormelatlon between B~V and ~V ~ for LIS-U and

~ypothetieal Tests I ~h~ough 5

~Expectation
Expectationoe ~ oe ~v co~ {~Iv, ~v] va~ {~v } va~ {Iv~ R~V~~

LIS-U

Ip. 1

~p. 2

Ip. 3

~p. ~

0.000

0.000

0.000

0.000

0.009

0.000

0.001

-0.029

0.000

-0.0~2

0.000

0.000

0.721

0.651

0.288

0.638

0.695

0.698

0.781

0.696

0.291

0.675

0.725

0.750

0.666

0.609

0.28%

0.603

0.666

0.6W9

0.9998

0.9993

1.0000

0.999q

1.0000

0.9999
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correlation is very high in every instance. The value of variance for ~v is
smaller than that for ~v in every case, which supports a slightly stronger
tendency of regression about estimator ~v.

From the above observations of mean-square error, etc., it has been
suggested that the Bayes modal estimator ~v can be used as a good approxi-
mation to the Bayes estimator ~v, since in computational procedure it is
much easier to get 6v rather than ~’v, when conditions (i) and (ii) or (ii)*,
described in Chapter 3, hold for the model for the operating characteristics
of individual item responses. The procedure of obtaining the Bayes modal
estimate will be discussed in the following chapter.



CHAPTER 9

COMPUTATIONAL PROCEDURES
FOR OBTAINING THE ESTIMATES

As was stated earlier, availability of high-speed computers facilitates
the computation of the estimates, especially in maximum likelihood estimation
and Bayes modal estimation.

We can obtain the Bayes estimate for a given response pattern directly
from (7-6) of Chapter 

f_~ 0~(V, 0)d0(7-6) ~v =
P(V) ’

where P(V) is given by equation (7-5)

f_°P(V) = ~b(V, O) (7-5)

and

(9-1) ~b(V, O) = Pv(O)l(O),

Although we cannot let the computer calculate the maximum likelihood
estimate directly from (9-3), we can have it compute the right hand side 
the equation for a sequence of 0 values, as well as the left hand side for a
given response pattern V, and search for the value of 0 at which the equality
holds.

In the general case where a sufficient statistic does not exist, the maximum
likelihood estimate, 0v, can be obtained by the following procedure.

73

when the distribution of the latent variate is known or reasonably assumed.
In contrast to this, we cannot obtain the maximum likelihood estimate

or the Bayes modal estimate directly by using a simple formula like (7-6).
This is true even for the simplified case of the logistic model of dichotomous
items, where a sufficient statistic exists. In this instance, t(V), defined by

(9-2) t(V) = ~ a~xg 

gives all the information about 0 available in the response pattern V [Birnbaum
in Lord & Novick, 1968], where xg takes either 1 or 0, and the maximum
likelihood estimate is the value of 0 which satisfies

(9-3) t(V)

= ~_~ agPo(O).
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(1) For each element of a given response pattern, ko, let the computer
calculate the values of A~o(0) with respect to a sequence of 0 values, which
have a sufficiently wide range and a small interval. A~.(0) has been defined
by (3-1) in Chapter 3, such that

(3-1) A~,(O) = P~,(O) 

(2) Let the computer add these A~,(0)’s computed with respect to 
value of 0, over all the responses in the response pattern.

(3) If the result of the summation equals zero at a specified value of 
this value is taken as the maximum likelihood estimate, Ov ̄  If not, let the
computer specify the two successive values of 0 between which the sum total
of A~o(0)’s transits from the negative value to the positive value, and search
for the value of 0 between these two values at which the sum total equals ~,ero.
A convenient way will be to have the computer specify additional nine values
of 0 between the two~ by making the interval one tenth of the original one,
and to let it repeat the steps, (1), (2) and (3), for these eleven values 
In this way, we can make the value of maximum likelihood estimate as
precise as we wish.

(4) If the transformation of the variable is necessary, let the computer
transform 0v thus obtained into Cv by a specified formula

(9~) cv =
If the computer has failed in specifying the two successive values of

step (3), it must be because of the shortage of the range of O, provided that
A~o(O) defined by (3-1) satisfies condition (i) and (ii) for unique maximum,
which have been discussed in Chapter 3, for every kg contained by the response
pattern. Then we have to try to improve the computer program so that
enough range of 0 will be covered. If all the kg’s in the response pattern
satisfy condition (i) and (ii)* for unique maximum, instead of (i) and (ii), 
failure in specification may be due to the existence of a terminal maximum.

If ](0) is known or reasonably assumed, and it satisfies condition (iii)
and (iv) for unique Bayesian modality, we can obtain the Bayes modal esti-
mate in the same way as we get the maximum likelihood estimate. The only
additional procedure is that G(O), defined by (3-37) in Chapter 3, such that

(3-37) G(O) = 1(0)

should be computed with respect to the same sequences of 0, and should be
used in addition to the A~,(0)’s. In this ease, however, there exists no terminal
maximum, which we have already seen in Chapter 3, provided that conditions
(i), (ii)*, (iii) and (iv) are met. Step (4) should be excluded, moreover, 
the Bayes modal estimator does not have a transformation-free character,
as we have seen in Chapter 2.
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This method of obtaining the maximum likelihood estimate or Bayes
modal estimate for a given response pattern will particularly be useful in the
machine-assisted testing situation, where the examinee is given test items
sequentially. We can have the computer obtain the maximum likelihood
estimate~ ~v, or the Bayes modal estimate, ~v, based on the response pattern
of an initial few test items given to the examinee, and let it select an item
having a maximum amount of information around that value of 0 out of the
whole item library, as the next item presented to the examinee. In this way
we can design an efficient individual test, which makes the convergence of the
estimate very rapid. This may be worth examining in practical situations.



CHAPTER 10

SOME OBSERVATIONS CONCERNING THE RELATIONSHIP
BETWEEN FORMULAS FOR THE ITEM CHARACTERISTIC

FUNCTION AND THE PHILOSOPHY OF SCORING

In this chapter, we shall deal only with dichotomous items. Notations
P=(O) and Qg(0), defined in Chapter 1, are to be used, therefore, throughout
this chapter instead of Pkg(O), the operating characteristic of item response,
and Po(~) is called the item characteristic function.

It happens frequently that we can explain a set of testing results not only
on one specified model but also on some other model or models. In other words,
the fit of more than one model can be simultaneously good to the same
empirical data. It is interesting to note, on the other hand, that the philos-
ophies of scoring implied in these models are often different from one another
even if the item characteristic functions are very much alike. It seems to us,
therefore, that the philosophy of scoring may be used as one of the criteria
for determining which model is preferable to the others, in case the empirical
data can be explained by more than one model simultaneously. This criterion
should be used, however, only when there is no other obiective reason why
one model should be taken in preference to the others, since it largely depends
on a researcher’s subiective judgment to decide which philosophy of scoring
is better than the others.

In this chapter we shall use ~ as our estimator, i.e., the maximum like-
lihood estimator of ~ on the response pattern with Lv(O) as the likelihood
function, since it can be obtained without specifying the latent distribution.
In so doing we have the advantage of generalizing the results obtained with
respect to one variable to its transformed variables and, consequently, to
the transformed models, because of the estimator’s transformation-free
character discussed in Chapter 2. As far as we have no external criteria with
which the equality of intervals of the latent variable is iustified, we have to
content ourselves to get only order statistics for the respondents’ abilities in
the strict sense of the word, and, therefore, the transformation-free property
of an estimator is important in preserving the order of respondents’ estimated
abilities. Thus we must keep in mind that all the results obtained with respect
to ~ can be transferred to ~, if necessary, provided that variate r has a func-
tional relationship with 8 which is expressed as being monotonically increasing
in 8.

We shall deal in this chapter solely with cases in which conditions (i)
and (ii)*, introduced in Chapter 3, are satisfied with respect to 

Let A~(~) or As denote the basic function defined in Chapter 3, for the
positive response to item g, and Bg(O) or Bg be that for the negative response.

77
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We can write

(10-1)

and

(10-2)

A,(O) = p,(#)

Bo(8) (O/O0)Q.(O)Q,(o) 

by following (3-1) of Chapter 
Equation (10-1) can be developed and rewritten 

(10-3)
Po(o)Qo(O)

by defining So(0) so that

(1~4)

= Bo(#) + So(O),

(O/OO)Po(#).
So(O) 

We can also write from (10-3)

(10-5) Bo(O) = A,(O) -- S,(O).

Here we shall define am(O) and 3~(0) so that

a.(O) = ~ Ao(O)(10-6)

and

(10-7) 3.(0) = 22 Bo( 

In order to obtain the value of maximum likelihood estimate ~J from a given
response pattern on some specified model, the term to be set equal to zero
should be given by

(10-8) ~, Ao(O) + ~, Bh(O) = am(O) -- ~ 

where G means the see of i~e~ to which the responses of u given respo~e
patte~ are positive, and ~ is tha~ of ite~ ¢o w~ch the answers are negative.
Since both a.(O) and B,(0) have ~ed values for a given set of n ite~ and 
given value of e, the term which determines the value of estimate for a given
respo~e pattern ~1 be either

(10-0) -- ~
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or

o~

and, therefore, the functional form for So(~?) takes an important role 
determining the order of the estimates.

From the definition of So(~) we can easily see that, in the case where the
item characteristic function is symmetric with (bo , 0.5) as the center 
symmetry and the relationship

(10-11)

holds, ~vhere bo is the value of ~ at which

(10-12) Po(b~) = Qo(b~) 0.5,

So(O) becomes a symmetric curve with 0 = bo as its axis of symmetry. This
means that in such a case So(0) can never be monotonically increasing nor
decreasing in 0, but can be constant, symmetrically convex, etc.

In the case of the logistic model for dichotomous items, which evidently
satisfies conditions (i) and (ii)*, and where the item characteristic function
is given by

1
(10-13) Po(O) 

1 -~- e-D~(°-~) ’

we obtain a formula for So(O) so that

(10-14) So(O) = Dao,

since we have by differentiating (10-13)

(10-15)
0__ P,(O) = Da,Po(O)Q~(O).
O0

This result indicates that Sg(O) on this model is constant throughout the whole
range of 0, and its magnitude is determined solely by discriminating param-
eter a~, without being a~ected by the value of difficulty parameter bo. Since
a.(0) is a monotonically decreasing function of 0 and the term to be subtracted
from an(0) is given 

(10-16) ~ Sh(O) = D ~_, a~,

it is obvious that the less the value of (10-16) is, the higher is the value ofthe
estimate, regardless of the difficulties of given items. This conclusion is,
of course, congruent with the fact that a sufficient statistic t exists for 0 on
the logistic model for dichotomous items which is given by

(10-17) t(V)

(Birnbaum in Lord & Novick, 1968).
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In contrast with the above result obtained on the logistic model, some
interesting facts are observed on the normal ogive model, which provides the
item characteristic function given by

1
(10-18) P, = %/,~-~ .-¢. e-’’/~ dt,

where t is a dummy variable in this case. On this model S,(O) is not constant
for all the values of O, but is ~ symmetrically convex cu~e with

(10-19) 2~

as its local minimum attained at the point

(10-20)

and with ~ as its two upper asymptotes. That is to say, the minimal value
of S~(O) and the steepness of its cu~e are determined by the magnitude of a,,
the discrimination index, and the horizontal position of the cu~e is determined
by b,, the difficulty index of item g.

Thus it has been made clear that on the normal ogive model not only the
discriminating powers of items but also the d~culties take part in deter~ning
the value of the estimate for a specified response pattern.

We could classify all the possible relationships between S,(0) and S~(O)
on the normal ogive model for dichotomous items into the following four
categories.

(1) The two cu~es never converge throughout the whole range 
In a special case where the following relationships

(1%21) b~ = b~

a, > a~

hold, we obtain a strict inequality between S,(O) and S~(8) so 

(10-22) S~(O)

throughout the range of ~. Then we could easily understand that, whenever
the rest of the elements of two response patterns are the same, the response
pattern in which the response to g is positive and that to h is negative is given
a higher value of estimate than the other, in which the response to h is positive
and that to g is negative. For convenience, hereafter, we shall call the former
response pattern ~ and the latter ~. This is a typical example of category (1).
Inequality (10-22) holds, however, in many other instances where equality
between b~ and b~ does not hold, as illustrated in Figure 10-1. In this figure
the values of a, and b~ are given in the parentheses attached to each curve.
We can see that cu~es B and D are in the relationship expressed by (10-21)
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FIGURE 10--1

hO 21o

Examples of the relative positions of curves given by So(0).

and never converge, and also curves B and C never converge in spite of the
fact that the values of the bg’s are considerably different from each other,

(2) The two curves are tangent at one point.
In this case the relationship between Sg(e) and Sh(O) is expressed by the

following inequality

(10-23)

where equality holds only for one value of e. The relative magnitudes of item
parameters are given by

a~}
(10-24) ao

b~ # bh

just like many instances involved in category (1). In Figure 10-1 curves
A and C illustrate this relationship, and the value of e at which these two
curves are tangent is denoted by eo , although this figure is more or less
schematic and the value of parameter b~ attached to curve C is an approxi-
mated one. Except for a special case where the curve expressed by

(10-25) a.(O)- ~_, S~(O)
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intersects curves A and C at the point of their convergence, the same principle
for the relative magnitudes of estimates assigned to response patterns ~ and ~
described in the previous category it also valid. In that special case where the
three curves cross one another at one point, the same estimate value, 00 , is
assigned to both response patterns ]~ and ~.

(3) The two curves intersect each other at two points.
In this case the relationship between Sg(0) and Sh(O) is given by

(10-26)

where

(10-27)

Sg(0) > Sh(0) for ~ < 01 and

S~(O) = S,(0) for 0 = ~1 and

S~(~) < S~(0) for ~, < ~ <

The relationships between the item parameters of g and h are the same a~
those given by (10-24). In Figure 10-1 the above relationship between S,(O)
and S~(0) is illustrated by curves A and B. It is obvious that the relative
magnitudes of estimates assigned to response patterns ]~ and ~ are reversed
whenever the curve expressed by (10-25) intersects curves A and B within the
range 0, < 0 < 02, and otherwise the same relationship as the one between
curves A and C also holds.

(4) The two curves intersect each other at one point.
The relationship between S~(O) and S~(O) is expressed as follows.

Sg(O) > Sh(O) for 0 < 031

(10-28) S~(O) = S~(O) for 0 = 03~

So(O) < Sh(O) for 0 > 03

In this category situations are limited to the ones in which

(10-29) ao = ah~,

b~ > b~

provided that the range of 0 is (- ~, ~). In Figure 10-1 curves D and 
illustrate this relationship.

The relative magnitudes of the estimates assigned to response patterns
1~ and ~ are reversed depending upon whether the curve expressed as (10-25)
intersects these two curves within the range Of 0 less than 03 or greater than 03 ̄
If it crosses the two curves exactly at their intersection, the same value, 0a, is
assigned to both response patterns as their estimates.

So far we have seen how complex the factors for determining the relative
magnitudes of the estimates assigned to specified response patterns on the
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normal ogive model are, even if we take a simple situation where only response
patterns ]~ and ~ are taken into consideration.

Among those complex relationships, category (4) supplies a relatively
simple principle, and for this reason we shall observe this particular case for
a while. In this case we can easily see that

be + bh
(10-30) O~ = 2

Suppose that a test consists of only two dichotomous items, g and h, whose
relationship is classified into category (4). We shall express a response pattern
supplied by this test as

(10-31) V = (xh, xg),

which leads to the result that response patterns ]~ and g are represented by
(0, 1) and (1, 0) respectively.

We can write from equations (10-1), (10-2), and (10-8) 

(O/OO)Pdo) (o/oo)Q~(o)
(10-32) ,~2(0) -- S~(O) - P~(O) + Q~(O)

= (O/O0)P.(O) .( O/O0)P~(O)
P~(O) 1 -- P~(O)

and

(10-33) a~(O) - S~(O) (O/O0)P~(O) (o/oo)Og(o)
= P~(O) + Q~(o)

(o/oo)P~(o)_ (o/oo)P~(o).
P~(o) 1 - P~(o) 

both of which equal zero simultaneously when 0 = bo + bh/2. In other words
the curve given by a2(0) for this test, which coincides with the term expressed
by (10-25) in this particular case, intersects each of Sg(O) and Sh(O) at exactly
the same point where these two curves cross each other. Thus the same value,
be + b~/2, is assigned to both response patterns, (0, 1) and (1, 0), as 
estimates.

In the upper figure of Figure 10-2, these three curves are drawn by solid
lines. In this example, be -- --0.5, b~ = --1.5, and as = a~ -- 1.0.

This fact suggests that if a test consists of more than two dichotomous
items including items g and h satisfying the condition given by (10-29), the
value of estimate assigned to a special case of response pattern/~, in which all
the item responses to the other (n -- 2) items exclusive of items g and h are 
is greater than the one assigned to the corresponding case of response patterr~
~, while the value of estimate assigned to another special case of response
pattern/~, in which all the item responses to the other (n -- 2) items are 
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,, 2(e) =3(e] =4(e) =5(e)

,.o

0.0 [ .......
-3~ -2.0 -I .0 0.0 1.0 2,0 3.0

- 1.0

- 2.0

F~OUR~ I~2

~ela~ve pos~£ons of ~(0), ~(~) and ~(0); --~(0), --~(~) and ~.(0), when 
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is less than the one assigned to the corresponding case of response pattern ~.
In the upper figure of Figure 10-2 the situation held in the latter case is
illustrated for three cases where n = 3, n = 4 and n = 5, and the parameter
values of the items additional to g and h are a~- = 0.8 and bi = 0.0 in the case
where n = 3, a; = 1.2 and bi = 0.4, together with the previous one in the case
where n = 4, a; = 0.4 and b; = 1.5 in addition to the previous two in the
case where n = 5. That is to say, the curve drawn by the dotted line in ~his
figure represents an(O) in each case, which coincides with the term expressed
as (10-25). It is obvious from the definition of an(0) that we always 

(10-34) an(0) > a~_~(0),

for the entire range of ~, if n is greater than one.
In the lower figure of Figure 10-2 the relationship held in the former case

is illustrated for the same three instances. The curve drawn by the dotted line
in this figure represents f~n(0) in each case, which coincides with the term

(10-35) ~n(0) A- ~ S~(0)
i#g,h

in this specific case, and the curves drawn by solid lines are -So(O) and
--Sh(O) respectively. It is also apparent from the definition of rio(e) 

(10.36) B,(O) < fl,~-l(O)

always holds for the entire range of 0, provided that n is greater than one.
Now let us consider a situation in which examinees are required to solve n

dichotomous items, all of whose discriminating powers are the same, but whose
difficulty levels are different from one another. For simplicity, let us suppose
that n = 5 and the five items are denoted by 1, 2, 3, 4 and 5, in the order of
easiness. If there are five examinees who have tried to solve all the five items
but succeeded in only one, and each item solved is different from each other,
to which of the five examinees should be assigned the highest value of estimate?
The answer to this question may largely depend upon subjective judgments
or preferences. On the normal ogive model, however, the answer is definite,
as we can easily observe by following the preceding reasoning. We can arrange
the five response patterns in the order of high evaluation as the following.

(o, 0, 0, 0, 1)
(o, 0, o, 1, 0)
(0, o, 1, 0, 0)
(o, 1, o, 0, o)
(1, 0, 0, 0, 0)

This fact appears to suggest that the philosophy of scoring underlying the
normal ogive model is such that an examinee is evaluated as low in the ability
tested because he can only solve an easy item, while an examinee who has
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solved a difficult item is evaluated as high in the ability tested because of the
difficulty of the item solved.

Now let us consider another instance. If there are another five examinees
who have also tried to solve the same five items and who have succeeded in
four of them, but failed in only one, and each item failed is different from each
other, to which of these five examinees should be assigned the highest value
of estimate? On the normal ogive model, again we can easily see that these
five response patterns are arranged in the order of the magnitudes of estimates
as follows.

(1, 1, 1, 1, 0)
(1, 1, 1, 0, 1)
(1, 1, 0, 1, 1)
(1, 0, 1, 1, 1)
(0,1,1,1,1)

In this case the philosophy of scoring seems to be that an examinee is evaluated
as low in the ability tested because of the fact that he cannot solve even an
easy item, while an examinee who has failed in a diffcult item is evaluated
as high in the ability tested because it is no proof of his inferiority that he has
failed in a difficult item.

The above two philosophies are, in one sense, contradictory with each
other, since the principle is completely reversed. That is to say, the difficulty
of an item in the former instance is treated just as the easiness of an item in
the latter instance, and vice versa. If we apply the principle in the former case
to the latter, the order of evaluation of the five response patterns should be
reversed, since, for instance, an examinee with response pattern (0, 1, 1, 1, 1)
has succeeded in the most difficult four items, while an examinee with response
pattern (1, 1, 1, 1, 0) has succeeded in the easiest four items.

This fact is not necessarily considered as contradictory. As was mentioned
earlier in this chapter, it may largely depend upon subjective judgments or
preferences. It can be integrated by the statement that stress is put upon the
difficulty of the solved item if the number of the solved items is small, and it
is put upon the easiness of the unsolved item if the number of the unsolved
items is small. This is the due result obtained from the symmetric formula for
the item characteristic function expressed by (10-11) and (10-12), with which
both success and failure are treated exactly in the same way.

If the number of succeeded items is more than one and less than four,
the order of the magnitudes of estimates assigned to the response patterns on
the normal ogive model is much less predictable, as we can foresee from the
earlier observations. We cannot predict so easily, for example, the result
obtained for a rather simple case in which all the distances between two
adjacent diffculty parameters of the items are the same. For the purpose of
illustration, the result obtained for the response patterns in which three
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responses are positive, by setting bl = -2.0, b2 -- -1.0, b~ -- 0.0, b4 -- 1.0
and b5 = 2.0 and all the values of discriminating parameters are 1.0, is shown
below. The range of resulting estimates is approximately 0.07 through 0.67.

(1, 1, 0, 0, 1)
(1, 1, 1, o,o)
(1, 1, o, 1, o)
(1, o, 1, o, 1)
(I, O, O, 1, 1)

(1, O, I, 1, O)
(o, 1, 0, 1, 1)
(0,1,1,0,1)
(0, 0, 1, 1, 1)
(0, 1, 1, 1, O)

Since on the logistic model, which is used as an approximation to the normal
ogive model, all the values of estimates assigned to the above response
patterns are the same (approximately 0.52), this diversity of the values 
estimates obtained on the normal ogive model is by no means negligible.
And yet it is hard for us to induce a simple philosophy of scoring from the
above result, although we can understand why it is so complicated from the
earlier observations about Sg(O), am(O), and others.

In the author’s experience, even the integrated explanation about the
philosophy of scoring on the normal ogive model when we take only the first
two observations into our consideration is the subject of opposition for many
people’s subjective and intuitive judgments. They approve of the principle
suggested in the first instance where the response patterns with only one
element of success are treated, but oppose the other which is suggested in the
second instance where the response patterns with four elements of success
are dealt with.

Thus we may have to find some other model on which the philosophy of
scoring is such that, among the response patterns with the same number of
positive responses, higher values of estimates are assigned to response patterns
in which responses to more difficult items are positive, while lower values of
estimates are assigned to response patterns in which less difficult items are
responded to correctly, in order to satisfy their intuitions. The item charac-
teristic function on such a model should provide a monotonically decreasing
function for S~(O), whose horizontal position should be determined by the
difficulty of the item. In that ease, the item characteristic function cannot be
symmetric, as is clear from the earlier observations.

For illustrative purposes, we shall take one specified model here, although
we can formulate many other models satisfying the above requirement. On,
this new model the item characteristic function is given by the following
formula,
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(10-37) Po(O) = {1 + e-’°’(°-bo’}-2.

We can see that if an item characteristic function, Po(O), can be expressed by

(10-38) Po(O) = {P~**(0)}2,

where P*~*(O) is also the item characteristic function defined on another
model, which provides the basic functions satisfying conditions (i) and (ii)*
described in Chapter 3, we shall obtain

(o/oo)Po(o)
(10-39) Ax(O) - P~(O)

= 2(O/O0)P*~*(O)
P*~*(O)

and

(10-40) (o/oo) Q~(o)
Ao(O) = Q.(o)

2P~**(0) (o/Oo)Q*~*(O)
{ 1 + P*~*(O) } Q*~*(o)

From these two equations it is concluded that the new model also provides the
basic functions satisfying conditions (i) and (ii)*. Since the item characteristic
function given by equation (10-37) is the square of the one on the logistic
model, the new model also provides basic functions satisfying conditions (i)
and (ii)*. Thus it has been proved that the unique maximum likelihood
estimator exists with respect to any possible response pattern on this new
model, except for two extreme cases where all the elements of the response
pattern are uniformly 0 or 1.

From (10-38) and (10-39) we 

(lO-41) so(o) (o/oo)Po(o).Po(o)Qg(o)
2 (O/O0)P*~*(O)

1 + P*~*(O) P*o*(o)Q*~*(O)

and on this specific model we can write

2Da~
(10-42) So(O) = 1 + P*~*(O)"

Sin~e by differentiating (10-42) we have

__0 Sg(O)= 2D2a~P*°*(O) Q*~*(O)
O0 {1 + P~**(O)}~

(10-43) < 0,

it is evident that So(O) is monotonically decreasing in 0.
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The upper and lower asymptotes for S,(0) are given 

(10-44) lim S.(O) = 2Da~

and

(10-45) lim S.(O) = Da, 

and further we have

2Da~
for 0 = b~.(10-46) So(O) = 1.5 

The upper figure of Figure 10-3 illustrates the four examples of the item
characteristic functions where D = 1.702 and whose parameter values,
ao and b, , are shown in parentheses. Iu the lower figure of Figure 10-3 are
shown the corresponding item characteristic functions obtained by trans-
forming 0 into r by

(10-47) r = e°,

1.0

0.5

0.0
-3.0 -2.0 - 1.0 0.0 1.0 2.0 3.0 4.0

LO

0.5

0.0
0.0

( 1.0, - 1.0)

~ (0.6, 0.5) 

5.0 I0.0 15.0

F~GURE 10-3

Item characteristic functions for four hypothetical items on the model defined by equation
(10-37) and their exponential transformations.
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which also provide the maximum likelihood estimator ~, as we have seen
earlier.

Figure 10-4 presents eight examples of S~(0), in which D = 1.702 and the
values of a~ are 1.9, 1.7, 1.5, 1.3, 1.1, 0.9, 0.7 and 0.5, respectively, and all
the values of b~ are 0.0.

If we apply this model to the earlier instances of five items instead of the
normal ogive model, the order of arrangement of five response patterns with
only one positive response is the same as before, but that of the other five
response patterns with four positive responses is completely reversed. The
order of arrangement of 10 response patterns with three positive responses is
quite different from the previous one, as shown below.

(o, o, 1, 1, 1)
(o, 1, 0, 1, 1)
(1, o, o, 1, 1)
(o, 1, 1, 0, 1)
(1, 0, 1, 0, 1)
(1, 1, O, O, 1)
(0, 1, 1, 1, O)
(1, 0, 1, 1, 0)
(1, 1, o, 1, 0)
(1, 1, 1, o,o)

The result is quite predictable, as we can easily see. The basic functions for
these response patterns are given elsewhere (cf. Samejima, 1968a, Appendix 6),
together with those on the normal ogive model.

This is only an example of the possibilities of using the philosophy of

7.0

6.0

5.0

4.0

2.0

LO

0.0 ~ I
-7.0

0.0}
0.0)

¯ ~ 0.0)
0.0 )
0.0)
0.O)

(0.5, 0.0)

-6.0 -5.0 -40 -30 -Z.O -I.0 0.0.. 1,0 2.0 3.04.05.06.0 7.0

FIGURE 10-4

for eight hypothetical items on the model defined by equation (10-37).
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scoring ia formulating a model. Since in practical situations it is not likely that
we solve a very difficult item simply because of the good conditions brought
about by chance factors, while it is much more likely that we fail in a very
easy item simply because of chance factors, it may be advisable that the
treatment of success and failure in a symmetric way should be modified at
least in some cases. Asymmetric functional forms for the item characteristic
function, therefore, should be investigated from various aspects for that
purpose.



CHAPTER 11

DISCUSSION AND PRACTICAL IMPLICATIONS

Sufficient conditions for the existence of a unique maximum likelihood
estimator and that of a unique Bayes modal estimator were formulated; and
in line with these conditions operating characteristics of graded responses
when the thinking process is homogeneous were introduced and discussed
especially in connection with the normal ogive model and the logistic model.
It has been made clear that the amount of information given by an individual
item or by a test will substantially increase if we score an item in a graded way
by using data on the normal ogive model for graded item responses as an
example. It has also been made clear that the estimator specified on the
entire response pattern has a substantial advantage to the one defined on the
simple test score on the normal ogive model, when the values of item dis-
criminating parameters are considerably different from one another, in the
sense that it provides us with substantially different values of estimates for
individual response patterns, reduces the standard errors of measurement
when the estimator is the expected value, and decreases the mean-square
errors. The Bayes modal estimator ~ proved to be a good approximation to the
Bayes estimator, the latter being the most accurate estimator in the sense
that the expectation of its mean-square errors is the smallest. The relationship
between the formula for the item characteristic function and the philosophy
of scoring was observed and the utility of asymmetric functional form for the
item characteristic function was suggested.

Throughout this paper the principle of local independence is assumed,
and testing situations in which a relatively small number of very meaningful
items are practiced have been focused on, rather than the situations where
a large number of less meaningful items are presented to examinees just as
in ordinary paper-and-pencil testings. The method of obtaining the maximum
likelihood estimator or the Bayes modal estimator on the response pattern is
useful in such situations, especially when it is combined with the graded way
of scoring. In sequential testing situations, another advantage is that we could
make use of this method in making the computer decide the difficulty of the
item which should be presented next by depending solely upon the previous
response given by the examinee, since the values of these estimates can easily
be obtained by simple addition of the basic functions of given individual
responses, provided that they satisfy the requirements stated in conditions
(i) and (ii), or, in the case of the Bayes modal estimator t~v, the requirements
stated in conditions (i) and (ii)*, and that the latent density function satisfies
the requirements stated in conditions (iii) and (iv). This is also possible 
we use the Bayes estimator ~v on the response pattern as our estimator,

93
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although the time required for the computer to decide the difficulty of the next
item may be longer. In order to realize the rapid convergence of the estimated
values to the true value of examinee’s ability, the latent density function
should have been obtained for a specified concentrated group of people to
which the examinee belongs. Further, it may be possible for us to assume that
an examinee’s ability itself has a distribution, and to try to specify the func-
tional form for it. If we have succeeded in specifying this distribution, we
could use it in the estimation. Especially in the case of sequential testing, this
distribution may have to be specified not only on spatial axes, but on temporal
axes, since there may be warming-up effects, fatigue and other factors which
effect the examinee’s ability.

In this paper we avoided dealing with multiple-choice items. One reason
why multiple-choice items were not treated here is that the conventional
formula for the multiple-choice item characteristic function does not seem
appropriate at least to several important cases. Another reason is that, in the
conventional usage of multiple-choice alternatives, alternatives themselves
may destroy the nature of the item since they give an examinee suggestions
for the correct response, and, consequently, the quality of what should be
measured may be altered, especially in the measurement of the profound
thinking process. This defect will be diminished, however, by such a device as
setting a pair of alternatives to one item [Noryoku-Kaihatsu-Kenkyujo, 1966],
and with this multiple-choice items can be treated just as free-response items,
so that there is no need to modify the model particularly for multiple-choice
items. The discussion about the multiple-choice situation will be made
separately.

In the measurement of any psychological trait, we can make use of any
specified response other than the positive one as a source of information, if
only it has high discriminating power for the trait measured. For example, we
could make use of some incorrect but plausible response to an item in the
measurement of ability, which is often used as a distracter in multiple-choice
alternatives, since it requires a certain level of ability for an examinee to
discover its plausibility.

In order to specify operating characteristics for such responses, we must
find a way to approach operating characteristics without formulating any
particular model, and by reducing as many assumptions as possible.
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APPENDIX

~tem C2 , A2. 2 an__d D2. 2 of LIS Measurement Scale for Non-verbal

Reasonin~ Abilit~ (translated from Japanese into English)

Item C2 (time limit: I0 min.)

This problem is ~o.cl~ssify figures according to a certain principle,

and you are asked to discover that principle.

Figures in the same set

Example:

Figures disqualified to
join that set

In the above example, the five figures on the left-hand side are in one

and the same set, while the other five figures on the night-hand side axe

disqualified to 5oin it. If you watch and compare these two groups of figures

carefully, you can find out the principle underlying the classification. In

this example, the qualification for a fiEure to belong to that set is:

(a) that it is a triangle,

and

(b) that it is shadowed.

Examples:
(1) (2) (3) (4) (5) (6) 

If you examine each of the above eiEht figures carefully as to whe~heP

it is qualified to join the se~ shown above when they are classified accordinE

to that principle, you will Eet the answe~ listed as below:
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~ 123%5678

being a triangle * ~ ~ ~

being shadowed ~ ~ ~ ~ ~

The mark, ~, in the above list indicates that the figure with the number

shown above meets the corresponding requirement written on the left end of

the list. In this example, a figure is disqualified to join the set unless it

¯ meets both of these two requirements, so only three figures, (i), (3) and 

ape qualified to join the set among the eight.

In the problem presented below, you ape to watch and compare carefully

the first five figure s "belonging to Group K" with the succeeding eight figures

"not belonging to Group K," and to discover the principle Of classification.

Then classify the figures given below according to the principle y~U have

found, by inserting a circle in the parentheses below each of the figures if you

consider it pertains to Group K and by inse~ting a cross in it if you’ think it

does not, and state briefly ths requirements fop a figure to join Group K.

Examples of figures belonging to G~oup K:

Examples of figures disqualified to pertain to Group K:
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RequiPements fop a figure to join Group K:

(ii) Item (A2. 1 and) A2.2. (time limit: 18 mln.)

This is a pPoblem of multiplication. Alphabetical letters, A, B, C, etc.

ape used instead of numbePs. You ape to discover which letter pepresents

which, number.

Example: KI
x 2 >

A I (0, 3, 6)

In the above multiplicatfon~ letters used are A~ I and K, and the numbePs

PepPesented by them are those Shown in the parentheses. The answer of this

A = 6, I = 0, and K = 3, because~ if so, the above equationexample is

becomes:

3 0
x 2

5 0

and gives a Peasonable calculation.
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In this way, in each of the following test items, you must find out

which letter represents which one of Those numbers shown in the parentheses

and write the corresponding number under each of the alphabetical letters

arranged below the parentheses.

You must keep in mind that onl~ one letter signifies only one number. In

the above example, for instance, it never happens that "I" represents "6" in

one place and "0" in the other, or both "A" and "K" signify "3". Also you

must watch never to use other numbers, than those shown in .the parentheses.

I KA
x 3 (0 i 5 6 7)

EB I ABEIK

[2]*

AHI RU
x 5

H I BARI

(012~58)

ABHIRU

~Item A2. 2

Item (D2.1 and) D2.2 (time limit: 18 min.)

(Instructions similar to those of items A2.1 and A2. 2 are given

first, and then the following two items of addition are presented. )

KA
+ KA (12567)

SHI AHI KS

[2]e

YAMA
+ UMI

KAWA

(0 3 I~ 6 7 8 9)

AIKMUWY

eI~em D 2.2


	MN17.pdf
	TABLE OF CONTENTS
	INTRODUCTION
	CH 1: DEFINITION OF RESPONSE PATTERN AND OPERATING CHARACTERISTIC
	CH 2: MAXIMUM LIKEHOOD ESTIMATOR AND BAYES MODAL ESTIMATOR BASED ON THE RESPONSE PATTERN
	CH 3: SUFFICIENT CONDITIONS FOR THE EXISTENCE OF THE UNIQUE MAXIMUM LIKELIHOOD ESTIMATOR AND THE UNIQUE BAYES MODAL ESTIMATOR WH
	CH 4: THE OPERATING CHARACTERISTIC OF GRADED RESPONSE WHEN THE THINKING PROCESS IS HOMOGENEOUS
	CH 5: NORMAL OGIVE AND LOGISTIC MODELS FOR THE OPERATING CHARACTERISTIC OF GRADED RESPONSE
	CH 6: AMOUNT OF INFORMATION
	CH 7: BAYES ESTIMATOR BASED ON THE RESPONSE PATTERN
	CH 8: THE MEAN-SQUARE ERRORS OF ESTIMATORS
	CH 9: COMPUTATIONAL PROCEDURES FOR OBTAINING THE ESTIMATES
	CH 10: SOME OBSERVATIONS CONCERNING THE RELATIONSHIP BETWEEN FORMULAS FOR THE ITEM CHARACTERISTIC FUNCTION AND THE PHILOSOPHY OF
	CH 11: DISCUSSION AND PRACTICAL IMPLICATIONS
	REFERENCES
	APPENDIX




